{"title":"基于一维卷积神经网络的昏迷/脑死亡EEG数据集分类","authors":"Boning Li, Jianting Cao","doi":"10.1007/s11571-023-09942-2","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalography (EEG) evaluation is an important step in the clinical diagnosis of brain death during the standard clinical procedure. The processing of the brain-death EEG signals acquisition always carried out in the Intensive Care Unit (ICU). The electromagnetic environmental noise and prescribed sedative may erroneously suggest cerebral electrical activity, thus effecting the presentation of EEG signals. In order to accurately and efficiently assist physicians in making correct judgments, this paper presents a band-pass filter and threshold rejection-based EEG signal pre-processing method and an EEG-based coma/brain-death classification system associated with One Dimensional Convolutional Neural Network (1D-CNN) model to classify informative brain activity features from real-world recorded clinical EEG data. The experimental result shows that our method is well performed in classify the coma patients and brain-death patients with the classification accuracy of 99.71%, F1-score of 99.71% and recall score of 99.51%, which means the proposed model is well performed in the coma/brain-death EEG signals classification task. This paper provides a more straightforward and effective method for pre-processing and classifying EEG signals from coma/brain-death patients, and demonstrates the validity and reliability of the method. Considering the specificity of the condition and the complexity of the EEG acquisition environment, it presents an effective method for pre-processing real-time EEG signals in clinical diagnoses and aiding the physicians in their diagnosis, with significant implications for the choice of signal pre-processing methods in the construction of practical brain-death identification systems.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143104/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classification of coma/brain-death EEG dataset based on one-dimensional convolutional neural network.\",\"authors\":\"Boning Li, Jianting Cao\",\"doi\":\"10.1007/s11571-023-09942-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electroencephalography (EEG) evaluation is an important step in the clinical diagnosis of brain death during the standard clinical procedure. The processing of the brain-death EEG signals acquisition always carried out in the Intensive Care Unit (ICU). The electromagnetic environmental noise and prescribed sedative may erroneously suggest cerebral electrical activity, thus effecting the presentation of EEG signals. In order to accurately and efficiently assist physicians in making correct judgments, this paper presents a band-pass filter and threshold rejection-based EEG signal pre-processing method and an EEG-based coma/brain-death classification system associated with One Dimensional Convolutional Neural Network (1D-CNN) model to classify informative brain activity features from real-world recorded clinical EEG data. The experimental result shows that our method is well performed in classify the coma patients and brain-death patients with the classification accuracy of 99.71%, F1-score of 99.71% and recall score of 99.51%, which means the proposed model is well performed in the coma/brain-death EEG signals classification task. This paper provides a more straightforward and effective method for pre-processing and classifying EEG signals from coma/brain-death patients, and demonstrates the validity and reliability of the method. Considering the specificity of the condition and the complexity of the EEG acquisition environment, it presents an effective method for pre-processing real-time EEG signals in clinical diagnoses and aiding the physicians in their diagnosis, with significant implications for the choice of signal pre-processing methods in the construction of practical brain-death identification systems.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09942-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09942-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Classification of coma/brain-death EEG dataset based on one-dimensional convolutional neural network.
Electroencephalography (EEG) evaluation is an important step in the clinical diagnosis of brain death during the standard clinical procedure. The processing of the brain-death EEG signals acquisition always carried out in the Intensive Care Unit (ICU). The electromagnetic environmental noise and prescribed sedative may erroneously suggest cerebral electrical activity, thus effecting the presentation of EEG signals. In order to accurately and efficiently assist physicians in making correct judgments, this paper presents a band-pass filter and threshold rejection-based EEG signal pre-processing method and an EEG-based coma/brain-death classification system associated with One Dimensional Convolutional Neural Network (1D-CNN) model to classify informative brain activity features from real-world recorded clinical EEG data. The experimental result shows that our method is well performed in classify the coma patients and brain-death patients with the classification accuracy of 99.71%, F1-score of 99.71% and recall score of 99.51%, which means the proposed model is well performed in the coma/brain-death EEG signals classification task. This paper provides a more straightforward and effective method for pre-processing and classifying EEG signals from coma/brain-death patients, and demonstrates the validity and reliability of the method. Considering the specificity of the condition and the complexity of the EEG acquisition environment, it presents an effective method for pre-processing real-time EEG signals in clinical diagnoses and aiding the physicians in their diagnosis, with significant implications for the choice of signal pre-processing methods in the construction of practical brain-death identification systems.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.