{"title":"有限势源内可逆非等温化学发动机的最大功构型","authors":"Lingen Chen, Shaojun Xia","doi":"10.1515/jnet-2022-0045","DOIUrl":null,"url":null,"abstract":"Abstract Chemical engine is an abstract model of some devices, such as solid state, photochemical, and electrochemical devices, photovoltaic cell, and mass exchangers. Finite chemical-potential source is one of its features. Finite time thermodynamics provides effective theoretical tool for determining performance limits for given thermal systems, and determining optimal process paths of thermal systems for given performance objectives. Endoreversible model is its basic model. A model of endoreversible non-isothermal chemical engines operating between a finite chemical-potential source and an infinite chemical-potential sink with mass resistance and heat resistance is established. Mass transfer processes between chemical potential reservoir and working fluid of the model are assumed to obey Onsager equations in linear irreversible thermodynamics. With a fixed cycle period, optimal cycle configuration for the maximum work output of the model is derived by applying optimal control theory. The results obtained include optimal performance and optimal path results in many previous literatures, and can provide some theoretical guidelines for optimal designs of practical chemical plants.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Maximum work configuration of finite potential source endoreversible non-isothermal chemical engines\",\"authors\":\"Lingen Chen, Shaojun Xia\",\"doi\":\"10.1515/jnet-2022-0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Chemical engine is an abstract model of some devices, such as solid state, photochemical, and electrochemical devices, photovoltaic cell, and mass exchangers. Finite chemical-potential source is one of its features. Finite time thermodynamics provides effective theoretical tool for determining performance limits for given thermal systems, and determining optimal process paths of thermal systems for given performance objectives. Endoreversible model is its basic model. A model of endoreversible non-isothermal chemical engines operating between a finite chemical-potential source and an infinite chemical-potential sink with mass resistance and heat resistance is established. Mass transfer processes between chemical potential reservoir and working fluid of the model are assumed to obey Onsager equations in linear irreversible thermodynamics. With a fixed cycle period, optimal cycle configuration for the maximum work output of the model is derived by applying optimal control theory. The results obtained include optimal performance and optimal path results in many previous literatures, and can provide some theoretical guidelines for optimal designs of practical chemical plants.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2022-0045\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2022-0045","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Maximum work configuration of finite potential source endoreversible non-isothermal chemical engines
Abstract Chemical engine is an abstract model of some devices, such as solid state, photochemical, and electrochemical devices, photovoltaic cell, and mass exchangers. Finite chemical-potential source is one of its features. Finite time thermodynamics provides effective theoretical tool for determining performance limits for given thermal systems, and determining optimal process paths of thermal systems for given performance objectives. Endoreversible model is its basic model. A model of endoreversible non-isothermal chemical engines operating between a finite chemical-potential source and an infinite chemical-potential sink with mass resistance and heat resistance is established. Mass transfer processes between chemical potential reservoir and working fluid of the model are assumed to obey Onsager equations in linear irreversible thermodynamics. With a fixed cycle period, optimal cycle configuration for the maximum work output of the model is derived by applying optimal control theory. The results obtained include optimal performance and optimal path results in many previous literatures, and can provide some theoretical guidelines for optimal designs of practical chemical plants.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.