t1-连续化学位移各向异性重聚焦噪声消除

IF 1.8 3区 化学 Q4 CHEMISTRY, PHYSICAL
Frédéric A. Perras , Tian Wei Goh , Wenyu Huang
{"title":"t1-连续化学位移各向异性重聚焦噪声消除","authors":"Frédéric A. Perras ,&nbsp;Tian Wei Goh ,&nbsp;Wenyu Huang","doi":"10.1016/j.ssnmr.2022.101807","DOIUrl":null,"url":null,"abstract":"<div><p><span>Due to their high gyromagnetic ratio, there is considerable interest in measuring distances and correlations involving protons, but such measurements are compounded by the simultaneous recoupling of chemical shift anisotropy (CSA). This secondary recoupling adds additional modulations to the signal intensities that ultimately lead to </span><em>t</em><sub>1</sub>-noise and signal decay. Recently, Venkatesh et al. demonstrated that the addition of CSA refocusing periods during <sup>1</sup><span>H-X dipolar recoupling led to sequences with far higher stability and performance. Herein, we describe a related effort and develop a symmetry-based recoupling sequence that continually refocuses the </span><sup>1</sup>H CSA. This sequence shows superior performance to the regular and <em>t</em><sub>1</sub><span>-noise eliminated D-HMQC sequences in the case of spin-1/2 nuclei and comparable performance to the later for half-integer quadrupoles.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"120 ","pages":"Article 101807"},"PeriodicalIF":1.8000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"t1-noise elimination by continuous chemical shift anisotropy refocusing\",\"authors\":\"Frédéric A. Perras ,&nbsp;Tian Wei Goh ,&nbsp;Wenyu Huang\",\"doi\":\"10.1016/j.ssnmr.2022.101807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Due to their high gyromagnetic ratio, there is considerable interest in measuring distances and correlations involving protons, but such measurements are compounded by the simultaneous recoupling of chemical shift anisotropy (CSA). This secondary recoupling adds additional modulations to the signal intensities that ultimately lead to </span><em>t</em><sub>1</sub>-noise and signal decay. Recently, Venkatesh et al. demonstrated that the addition of CSA refocusing periods during <sup>1</sup><span>H-X dipolar recoupling led to sequences with far higher stability and performance. Herein, we describe a related effort and develop a symmetry-based recoupling sequence that continually refocuses the </span><sup>1</sup>H CSA. This sequence shows superior performance to the regular and <em>t</em><sub>1</sub><span>-noise eliminated D-HMQC sequences in the case of spin-1/2 nuclei and comparable performance to the later for half-integer quadrupoles.</span></p></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":\"120 \",\"pages\":\"Article 101807\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204022000364\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204022000364","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

摘要

由于它们的高回旋磁比,人们对测量涉及质子的距离和相关性有相当大的兴趣,但这种测量由于化学位移各向异性(CSA)的同时重新耦合而复杂化。这种二次重耦增加了信号强度的额外调制,最终导致t1噪声和信号衰减。最近,Venkatesh等人证明,在1H-X偶极重耦期间增加CSA重聚焦周期可以使序列具有更高的稳定性和性能。在这里,我们描述了一个相关的努力,并开发了一个基于对称的重偶联序列,不断地重新聚焦1H CSA。该序列在自旋为1/2核的情况下表现出优于常规和t1噪声消除的D-HMQC序列的性能,并且在半整数四极子的情况下表现出与后者相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

t1-noise elimination by continuous chemical shift anisotropy refocusing

t1-noise elimination by continuous chemical shift anisotropy refocusing

Due to their high gyromagnetic ratio, there is considerable interest in measuring distances and correlations involving protons, but such measurements are compounded by the simultaneous recoupling of chemical shift anisotropy (CSA). This secondary recoupling adds additional modulations to the signal intensities that ultimately lead to t1-noise and signal decay. Recently, Venkatesh et al. demonstrated that the addition of CSA refocusing periods during 1H-X dipolar recoupling led to sequences with far higher stability and performance. Herein, we describe a related effort and develop a symmetry-based recoupling sequence that continually refocuses the 1H CSA. This sequence shows superior performance to the regular and t1-noise eliminated D-HMQC sequences in the case of spin-1/2 nuclei and comparable performance to the later for half-integer quadrupoles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
9.40%
发文量
42
审稿时长
72 days
期刊介绍: The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信