Kähler–Ricci孤子退化的存在性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Harold Blum, Yuchen Liu, Chenyang Xu, Ziquan Zhuang
{"title":"Kähler–Ricci孤子退化的存在性","authors":"Harold Blum, Yuchen Liu, Chenyang Xu, Ziquan Zhuang","doi":"10.1017/fmp.2023.5","DOIUrl":null,"url":null,"abstract":"Abstract We prove an algebraic version of the Hamilton–Tian conjecture for all log Fano pairs. More precisely, we show that any log Fano pair admits a canonical two-step degeneration to a reduced uniformly Ding stable triple, which admits a Kähler–Ricci soliton when the ground field .","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"The existence of the Kähler–Ricci soliton degeneration\",\"authors\":\"Harold Blum, Yuchen Liu, Chenyang Xu, Ziquan Zhuang\",\"doi\":\"10.1017/fmp.2023.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove an algebraic version of the Hamilton–Tian conjecture for all log Fano pairs. More precisely, we show that any log Fano pair admits a canonical two-step degeneration to a reduced uniformly Ding stable triple, which admits a Kähler–Ricci soliton when the ground field .\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 17

摘要

摘要我们证明了所有对数Fano对的Hamilton–Tian猜想的代数版本。更准确地说,我们证明了任何log Fano对都允许正则的两步退化为降维一致Ding稳定的三重,当地场时,它允许Kähler–Ricci孤立子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The existence of the Kähler–Ricci soliton degeneration
Abstract We prove an algebraic version of the Hamilton–Tian conjecture for all log Fano pairs. More precisely, we show that any log Fano pair admits a canonical two-step degeneration to a reduced uniformly Ding stable triple, which admits a Kähler–Ricci soliton when the ground field .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信