{"title":"沙特阿拉伯红海分离的巴氏海洋葡萄球菌对苯酚和甲苯的生物降解潜力","authors":"F. Basingab","doi":"10.21786/bbrc/15.2.15","DOIUrl":null,"url":null,"abstract":"Hydrocarbons including phenol and toluene are considered as the major source of energy and raw material of different industrial products. Although toluene and phenol have various beneficial applications, many studies reported the massive negative impacts of these contaminants on the environment and on human health. This study aims to provide an assessment of biodegradation potential of Staphylococcus pasteuri isolated from the industrial area at the coast of Red Sea, Jeddah, Saudi Arabia. From 29 isolates, a strain, that exhibits a notable growth on mineral salt medium supplemented with phenol and toluene as a sole carbon source, was chosen for further investigation. Different optimization conditions have been examined for optimal degradation; two concentrations of phenol and toluene (0.5% & 1.0%) and different incubation temperatures. Growth assessments was measured by optical density (OD) of phenol and toluene using spectrophotometer. Maximum OD for phenol and toluene: (ODmax= 0.787) and (ODmax= 0.969) compared to the abiotic control of (ODmax= 0.152) and (ODmax= 0.182) respectively. Degradation of phenol and toluene was also measured using high performance liquid chromatography (HPLC). In addition, molecular identification of the isolates was carried out using 16S rRNA analysis highlighted the isolated strain is Staphylococcus pasteuri (strain ATCC 51129) with the accession number (NR114435). This promising strain ATCC 51129 can be used in further biotechnological applications including oil biodegradation processes.","PeriodicalId":9156,"journal":{"name":"Bioscience Biotechnology Research Communications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradation Potential of Phenol and Toluene by Marine Staphylococcus pasteuri Isolated from the Red Sea, Saudi Arabia\",\"authors\":\"F. Basingab\",\"doi\":\"10.21786/bbrc/15.2.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrocarbons including phenol and toluene are considered as the major source of energy and raw material of different industrial products. Although toluene and phenol have various beneficial applications, many studies reported the massive negative impacts of these contaminants on the environment and on human health. This study aims to provide an assessment of biodegradation potential of Staphylococcus pasteuri isolated from the industrial area at the coast of Red Sea, Jeddah, Saudi Arabia. From 29 isolates, a strain, that exhibits a notable growth on mineral salt medium supplemented with phenol and toluene as a sole carbon source, was chosen for further investigation. Different optimization conditions have been examined for optimal degradation; two concentrations of phenol and toluene (0.5% & 1.0%) and different incubation temperatures. Growth assessments was measured by optical density (OD) of phenol and toluene using spectrophotometer. Maximum OD for phenol and toluene: (ODmax= 0.787) and (ODmax= 0.969) compared to the abiotic control of (ODmax= 0.152) and (ODmax= 0.182) respectively. Degradation of phenol and toluene was also measured using high performance liquid chromatography (HPLC). In addition, molecular identification of the isolates was carried out using 16S rRNA analysis highlighted the isolated strain is Staphylococcus pasteuri (strain ATCC 51129) with the accession number (NR114435). This promising strain ATCC 51129 can be used in further biotechnological applications including oil biodegradation processes.\",\"PeriodicalId\":9156,\"journal\":{\"name\":\"Bioscience Biotechnology Research Communications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Biotechnology Research Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21786/bbrc/15.2.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Biotechnology Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21786/bbrc/15.2.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biodegradation Potential of Phenol and Toluene by Marine Staphylococcus pasteuri Isolated from the Red Sea, Saudi Arabia
Hydrocarbons including phenol and toluene are considered as the major source of energy and raw material of different industrial products. Although toluene and phenol have various beneficial applications, many studies reported the massive negative impacts of these contaminants on the environment and on human health. This study aims to provide an assessment of biodegradation potential of Staphylococcus pasteuri isolated from the industrial area at the coast of Red Sea, Jeddah, Saudi Arabia. From 29 isolates, a strain, that exhibits a notable growth on mineral salt medium supplemented with phenol and toluene as a sole carbon source, was chosen for further investigation. Different optimization conditions have been examined for optimal degradation; two concentrations of phenol and toluene (0.5% & 1.0%) and different incubation temperatures. Growth assessments was measured by optical density (OD) of phenol and toluene using spectrophotometer. Maximum OD for phenol and toluene: (ODmax= 0.787) and (ODmax= 0.969) compared to the abiotic control of (ODmax= 0.152) and (ODmax= 0.182) respectively. Degradation of phenol and toluene was also measured using high performance liquid chromatography (HPLC). In addition, molecular identification of the isolates was carried out using 16S rRNA analysis highlighted the isolated strain is Staphylococcus pasteuri (strain ATCC 51129) with the accession number (NR114435). This promising strain ATCC 51129 can be used in further biotechnological applications including oil biodegradation processes.