下载PDF
{"title":"顶角双曲3-流形的共轭群","authors":"Hongbin Sun","doi":"10.1112/topo.12255","DOIUrl":null,"url":null,"abstract":"<p>For any oriented cusped hyperbolic 3-manifold <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>, we study its <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\epsilon )$</annotation>\n </semantics></math>-panted cobordism group, which is the abelian group generated by <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\epsilon )$</annotation>\n </semantics></math>-good curves in <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> modulo the oriented boundaries of <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\epsilon )$</annotation>\n </semantics></math>-good pants. In particular, we prove that for sufficiently small <math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\epsilon >0$</annotation>\n </semantics></math> and sufficiently large <math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$R>0$</annotation>\n </semantics></math>, some modified version of the <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\epsilon )$</annotation>\n </semantics></math>-panted cobordism group of <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> is isomorphic to <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mtext>SO</mtext>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <mo>;</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_1(\\text{SO}(M);\\mathbb {Z})$</annotation>\n </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"15 3","pages":"1580-1634"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12255","citationCount":"2","resultStr":"{\"title\":\"The panted cobordism groups of cusped hyperbolic 3-manifolds\",\"authors\":\"Hongbin Sun\",\"doi\":\"10.1112/topo.12255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For any oriented cusped hyperbolic 3-manifold <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math>, we study its <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>,</mo>\\n <mi>ε</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(R,\\\\epsilon )$</annotation>\\n </semantics></math>-panted cobordism group, which is the abelian group generated by <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>,</mo>\\n <mi>ε</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(R,\\\\epsilon )$</annotation>\\n </semantics></math>-good curves in <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> modulo the oriented boundaries of <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>,</mo>\\n <mi>ε</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(R,\\\\epsilon )$</annotation>\\n </semantics></math>-good pants. In particular, we prove that for sufficiently small <math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\epsilon >0$</annotation>\\n </semantics></math> and sufficiently large <math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$R>0$</annotation>\\n </semantics></math>, some modified version of the <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>,</mo>\\n <mi>ε</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(R,\\\\epsilon )$</annotation>\\n </semantics></math>-panted cobordism group of <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> is isomorphic to <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mtext>SO</mtext>\\n <mrow>\\n <mo>(</mo>\\n <mi>M</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>;</mo>\\n <mi>Z</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H_1(\\\\text{SO}(M);\\\\mathbb {Z})$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"15 3\",\"pages\":\"1580-1634\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12255\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12255\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12255","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
引用
批量引用