重复Cayley-Dickson过程和维数为8的子代数

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Jacques Helmstetter
{"title":"重复Cayley-Dickson过程和维数为8的子代数","authors":"Jacques Helmstetter","doi":"10.1007/s00006-023-01289-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>K</i> be a field of characteristic other than 2, and let <span>\\(\\mathcal {A}_n\\)</span> be the algebra deduced from <span>\\(\\mathcal {A}_1=K\\)</span> by <i>n</i> successive Cayley–Dickson processes. Thus <span>\\(\\mathcal {A}_n\\)</span> is provided with a natural basis <span>\\((f_E)\\)</span> indexed by the subsets <i>E</i> of <span>\\(\\{1,2,\\ldots ,n\\}\\)</span>. Two questions have motivated this paper. If a subalgebra of dimension 4 in <span>\\(\\mathcal {A}_n\\)</span> is spanned by 4 elements of this basis, is it a quaternion algebra? The answer is always “yes”. If a subalgebra of dimension 8 in <span>\\(\\mathcal {A}_n\\)</span> is spanned by 8 elements of this basis, is it an octonion algebra? The answer is more often “no” than “yes”. The present article establishes the properties and the formulas that justify these two answers, and describes the fake octonion algebras.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"33 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repeated Cayley–Dickson Processes and Subalgebras of Dimension 8\",\"authors\":\"Jacques Helmstetter\",\"doi\":\"10.1007/s00006-023-01289-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>K</i> be a field of characteristic other than 2, and let <span>\\\\(\\\\mathcal {A}_n\\\\)</span> be the algebra deduced from <span>\\\\(\\\\mathcal {A}_1=K\\\\)</span> by <i>n</i> successive Cayley–Dickson processes. Thus <span>\\\\(\\\\mathcal {A}_n\\\\)</span> is provided with a natural basis <span>\\\\((f_E)\\\\)</span> indexed by the subsets <i>E</i> of <span>\\\\(\\\\{1,2,\\\\ldots ,n\\\\}\\\\)</span>. Two questions have motivated this paper. If a subalgebra of dimension 4 in <span>\\\\(\\\\mathcal {A}_n\\\\)</span> is spanned by 4 elements of this basis, is it a quaternion algebra? The answer is always “yes”. If a subalgebra of dimension 8 in <span>\\\\(\\\\mathcal {A}_n\\\\)</span> is spanned by 8 elements of this basis, is it an octonion algebra? The answer is more often “no” than “yes”. The present article establishes the properties and the formulas that justify these two answers, and describes the fake octonion algebras.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"33 4\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-023-01289-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-023-01289-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设K是除2以外的特征域,并且设\(\mathcal{A}_n\)是从\(\mathcal)推导出的代数{A}_1=K\)通过n个连续的Cayley-Dickson过程。因此\(\mathcal{A}_n\)提供了由\(\{1,2,\ldots,n \}\)的子集E索引的自然基\((f_E)\)。两个问题激发了本文的写作动机。如果\(\mathcal)中维数为4的子代数{A}_n\)由这个基的4个元素跨越,它是四元数代数吗?答案总是“是”。如果\(\mathcal)中维数为8的子代数{A}_n\)由这个基的8个元素跨越,它是一个八元代数吗?答案往往是“不”而不是“是”。本文建立了证明这两个答案的性质和公式,并描述了伪八元代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Repeated Cayley–Dickson Processes and Subalgebras of Dimension 8

Let K be a field of characteristic other than 2, and let \(\mathcal {A}_n\) be the algebra deduced from \(\mathcal {A}_1=K\) by n successive Cayley–Dickson processes. Thus \(\mathcal {A}_n\) is provided with a natural basis \((f_E)\) indexed by the subsets E of \(\{1,2,\ldots ,n\}\). Two questions have motivated this paper. If a subalgebra of dimension 4 in \(\mathcal {A}_n\) is spanned by 4 elements of this basis, is it a quaternion algebra? The answer is always “yes”. If a subalgebra of dimension 8 in \(\mathcal {A}_n\) is spanned by 8 elements of this basis, is it an octonion algebra? The answer is more often “no” than “yes”. The present article establishes the properties and the formulas that justify these two answers, and describes the fake octonion algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信