贡棉浆剪切流动

IF 0.7 4区 工程技术 Q4 CHEMISTRY, APPLIED
V. Banishevsky, R. Zakusylo, D. Zakusylo
{"title":"贡棉浆剪切流动","authors":"V. Banishevsky, R. Zakusylo, D. Zakusylo","doi":"10.22211/CEJEM/134904","DOIUrl":null,"url":null,"abstract":"This article considers aspects of the flow, rheology, and viscometry of guncotton pulp. It is substantiated that during production guncotton pulp is subjected to shear deformation, taking into account sliding over smooth surfaces, in the input zones of the dies, in the barrel, and on the crimped finned tube of the screw extruder. At the same time, the presence of shear stress in guncotton pulp has not been established. A rotational viscometer with a torque meter, which was developed during this research, enabled the presence of shear stress in guncotton pulp to be demonstrated. The values of the flow stress depend on the solvent content in the guncotton pulp; as this is decreased, the τ0 value increases. When the flow curve for the section from τ0 to τRmax was constructed, the flow curves of the guncotton pulp were described by the Herschel-Bulkley equation. The flow curves of guncotton pulp obtained on corrugated capillaries of different sizes are non-invariant and depend on the magnitude of the deformation of the guncotton pulp in the capillaries. Guncotton pulp flows in a narrow range of pressures and deformations.","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear Flow of Guncotton Pulp\",\"authors\":\"V. Banishevsky, R. Zakusylo, D. Zakusylo\",\"doi\":\"10.22211/CEJEM/134904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article considers aspects of the flow, rheology, and viscometry of guncotton pulp. It is substantiated that during production guncotton pulp is subjected to shear deformation, taking into account sliding over smooth surfaces, in the input zones of the dies, in the barrel, and on the crimped finned tube of the screw extruder. At the same time, the presence of shear stress in guncotton pulp has not been established. A rotational viscometer with a torque meter, which was developed during this research, enabled the presence of shear stress in guncotton pulp to be demonstrated. The values of the flow stress depend on the solvent content in the guncotton pulp; as this is decreased, the τ0 value increases. When the flow curve for the section from τ0 to τRmax was constructed, the flow curves of the guncotton pulp were described by the Herschel-Bulkley equation. The flow curves of guncotton pulp obtained on corrugated capillaries of different sizes are non-invariant and depend on the magnitude of the deformation of the guncotton pulp in the capillaries. Guncotton pulp flows in a narrow range of pressures and deformations.\",\"PeriodicalId\":9679,\"journal\":{\"name\":\"Central European Journal of Energetic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Energetic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22211/CEJEM/134904\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Energetic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22211/CEJEM/134904","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文从浆料的流动性、流变性和粘度等方面进行了研究。事实证明,在生产过程中,考虑到在光滑表面上、模具的输入区、筒体和螺杆挤出机的卷曲翅片管上的滑动,浆棉浆会发生剪切变形。同时,粘棉浆中剪切应力的存在尚未确定。在这项研究中开发了一种带扭矩计的旋转粘度计,使粘棉浆中剪切应力的存在得以证明。流动应力的值取决于浆粕中溶剂的含量;随着时间的减少,τ0值增加。当构造τ0至τRmax截面的流动曲线时,炮棉浆的流动曲线由Herschel-Bulkley方程描述。在不同尺寸的波纹毛细管上获得的粘棉浆的流动曲线是非不变的,并且取决于粘棉浆在毛细管中的变形幅度。贡棉浆在狭窄的压力和变形范围内流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shear Flow of Guncotton Pulp
This article considers aspects of the flow, rheology, and viscometry of guncotton pulp. It is substantiated that during production guncotton pulp is subjected to shear deformation, taking into account sliding over smooth surfaces, in the input zones of the dies, in the barrel, and on the crimped finned tube of the screw extruder. At the same time, the presence of shear stress in guncotton pulp has not been established. A rotational viscometer with a torque meter, which was developed during this research, enabled the presence of shear stress in guncotton pulp to be demonstrated. The values of the flow stress depend on the solvent content in the guncotton pulp; as this is decreased, the τ0 value increases. When the flow curve for the section from τ0 to τRmax was constructed, the flow curves of the guncotton pulp were described by the Herschel-Bulkley equation. The flow curves of guncotton pulp obtained on corrugated capillaries of different sizes are non-invariant and depend on the magnitude of the deformation of the guncotton pulp in the capillaries. Guncotton pulp flows in a narrow range of pressures and deformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Central European Journal of Energetic Materials
Central European Journal of Energetic Materials CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
1.80
自引率
25.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: CEJEM – the newest in Europe scientific journal on energetic materials It provides a forum for scientists interested in the exchange of practical and theoretical knowledge concerning energetic materials: propellants, explosives and pyrotechnics. The journal focuses in particular on the latest results of research on various problems of energetic materials. Topics: ignition, combustion and detonation phenomenon; formulation, synthesis and processing; analysis and thermal decomposition; toxicological, environmental and safety aspects of energetic materials production, application, utilization and demilitarization; molecular orbital calculations; detonation properties and ballistics; biotechnology and hazards testing CEJEM presents original research and interesting reviews. Contributions are from experts in chemistry, physics and engineering from leading research centers in Europe, America and Asia. All submissions are independently refereed by Editorial Board members and by external referees chosen on international basis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信