{"title":"贡棉浆剪切流动","authors":"V. Banishevsky, R. Zakusylo, D. Zakusylo","doi":"10.22211/CEJEM/134904","DOIUrl":null,"url":null,"abstract":"This article considers aspects of the flow, rheology, and viscometry of guncotton pulp. It is substantiated that during production guncotton pulp is subjected to shear deformation, taking into account sliding over smooth surfaces, in the input zones of the dies, in the barrel, and on the crimped finned tube of the screw extruder. At the same time, the presence of shear stress in guncotton pulp has not been established. A rotational viscometer with a torque meter, which was developed during this research, enabled the presence of shear stress in guncotton pulp to be demonstrated. The values of the flow stress depend on the solvent content in the guncotton pulp; as this is decreased, the τ0 value increases. When the flow curve for the section from τ0 to τRmax was constructed, the flow curves of the guncotton pulp were described by the Herschel-Bulkley equation. The flow curves of guncotton pulp obtained on corrugated capillaries of different sizes are non-invariant and depend on the magnitude of the deformation of the guncotton pulp in the capillaries. Guncotton pulp flows in a narrow range of pressures and deformations.","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":"18 1","pages":"124-142"},"PeriodicalIF":0.7000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear Flow of Guncotton Pulp\",\"authors\":\"V. Banishevsky, R. Zakusylo, D. Zakusylo\",\"doi\":\"10.22211/CEJEM/134904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article considers aspects of the flow, rheology, and viscometry of guncotton pulp. It is substantiated that during production guncotton pulp is subjected to shear deformation, taking into account sliding over smooth surfaces, in the input zones of the dies, in the barrel, and on the crimped finned tube of the screw extruder. At the same time, the presence of shear stress in guncotton pulp has not been established. A rotational viscometer with a torque meter, which was developed during this research, enabled the presence of shear stress in guncotton pulp to be demonstrated. The values of the flow stress depend on the solvent content in the guncotton pulp; as this is decreased, the τ0 value increases. When the flow curve for the section from τ0 to τRmax was constructed, the flow curves of the guncotton pulp were described by the Herschel-Bulkley equation. The flow curves of guncotton pulp obtained on corrugated capillaries of different sizes are non-invariant and depend on the magnitude of the deformation of the guncotton pulp in the capillaries. Guncotton pulp flows in a narrow range of pressures and deformations.\",\"PeriodicalId\":9679,\"journal\":{\"name\":\"Central European Journal of Energetic Materials\",\"volume\":\"18 1\",\"pages\":\"124-142\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Energetic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22211/CEJEM/134904\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Energetic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22211/CEJEM/134904","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
This article considers aspects of the flow, rheology, and viscometry of guncotton pulp. It is substantiated that during production guncotton pulp is subjected to shear deformation, taking into account sliding over smooth surfaces, in the input zones of the dies, in the barrel, and on the crimped finned tube of the screw extruder. At the same time, the presence of shear stress in guncotton pulp has not been established. A rotational viscometer with a torque meter, which was developed during this research, enabled the presence of shear stress in guncotton pulp to be demonstrated. The values of the flow stress depend on the solvent content in the guncotton pulp; as this is decreased, the τ0 value increases. When the flow curve for the section from τ0 to τRmax was constructed, the flow curves of the guncotton pulp were described by the Herschel-Bulkley equation. The flow curves of guncotton pulp obtained on corrugated capillaries of different sizes are non-invariant and depend on the magnitude of the deformation of the guncotton pulp in the capillaries. Guncotton pulp flows in a narrow range of pressures and deformations.
期刊介绍:
CEJEM – the newest in Europe scientific journal on energetic materials It provides a forum for scientists interested in the exchange of practical and theoretical knowledge concerning energetic materials: propellants, explosives and pyrotechnics. The journal focuses in particular on the latest results of research on various problems of energetic materials.
Topics:
ignition, combustion and detonation phenomenon;
formulation, synthesis and processing;
analysis and thermal decomposition;
toxicological, environmental and safety aspects of energetic materials production, application, utilization and demilitarization;
molecular orbital calculations;
detonation properties and ballistics;
biotechnology and hazards testing
CEJEM presents original research and interesting reviews. Contributions are from experts in chemistry, physics and engineering from leading research centers in Europe, America and Asia. All submissions are independently refereed by Editorial Board members and by external referees chosen on international basis.