基于位置尺度CUSUM方法的向量自回归时间序列统计过程监测

IF 1.3 4区 工程技术 Q4 ENGINEERING, INDUSTRIAL
Sangjo Lee, Sangyeol Lee
{"title":"基于位置尺度CUSUM方法的向量自回归时间序列统计过程监测","authors":"Sangjo Lee, Sangyeol Lee","doi":"10.1080/08982112.2022.2156295","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we design a monitoring method for the vector autoregressive (VAR) and structural VAR (SVAR) time series using the residual-based cumulative sum (CUSUM) control chart. The residuals are calculated with a sequentially observed testing sample and the parameter estimates obtained from a training sample. Control limits are determined asymptotically when type 1 error probability scheme is used, but average run length (ARL) is also used in our empirical study. For the SVAR time series, independent component analysis (ICA) method is applied. A simulation study and real data analysis are conducted to evaluate our method.","PeriodicalId":20846,"journal":{"name":"Quality Engineering","volume":"35 1","pages":"493 - 518"},"PeriodicalIF":1.3000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical process monitoring for vector autoregressive time series based on location-scale CUSUM method\",\"authors\":\"Sangjo Lee, Sangyeol Lee\",\"doi\":\"10.1080/08982112.2022.2156295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, we design a monitoring method for the vector autoregressive (VAR) and structural VAR (SVAR) time series using the residual-based cumulative sum (CUSUM) control chart. The residuals are calculated with a sequentially observed testing sample and the parameter estimates obtained from a training sample. Control limits are determined asymptotically when type 1 error probability scheme is used, but average run length (ARL) is also used in our empirical study. For the SVAR time series, independent component analysis (ICA) method is applied. A simulation study and real data analysis are conducted to evaluate our method.\",\"PeriodicalId\":20846,\"journal\":{\"name\":\"Quality Engineering\",\"volume\":\"35 1\",\"pages\":\"493 - 518\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/08982112.2022.2156295\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08982112.2022.2156295","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要在本研究中,我们使用基于残差的累积和(CUSUM)控制图设计了一种向量自回归(VAR)和结构VAR(SVAR)时间序列的监测方法。残差是用顺序观察的测试样本和从训练样本获得的参数估计来计算的。当使用1型误差概率方案时,控制极限是渐近确定的,但在我们的经验研究中也使用了平均游程长度(ARL)。对于SVAR时间序列,采用独立分量分析(ICA)方法。对我们的方法进行了仿真研究和实际数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical process monitoring for vector autoregressive time series based on location-scale CUSUM method
Abstract In this study, we design a monitoring method for the vector autoregressive (VAR) and structural VAR (SVAR) time series using the residual-based cumulative sum (CUSUM) control chart. The residuals are calculated with a sequentially observed testing sample and the parameter estimates obtained from a training sample. Control limits are determined asymptotically when type 1 error probability scheme is used, but average run length (ARL) is also used in our empirical study. For the SVAR time series, independent component analysis (ICA) method is applied. A simulation study and real data analysis are conducted to evaluate our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quality Engineering
Quality Engineering ENGINEERING, INDUSTRIAL-STATISTICS & PROBABILITY
CiteScore
3.90
自引率
10.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: Quality Engineering aims to promote a rich exchange among the quality engineering community by publishing papers that describe new engineering methods ready for immediate industrial application or examples of techniques uniquely employed. You are invited to submit manuscripts and application experiences that explore: Experimental engineering design and analysis Measurement system analysis in engineering Engineering process modelling Product and process optimization in engineering Quality control and process monitoring in engineering Engineering regression Reliability in engineering Response surface methodology in engineering Robust engineering parameter design Six Sigma method enhancement in engineering Statistical engineering Engineering test and evaluation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信