具有ALOGTIME硬词问题和PSPACE完全压缩词问题的组

IF 0.8 Q3 COMPUTER SCIENCE, THEORY & METHODS
L. Bartholdi, Michael Figelius, Markus Lohrey, A. Weiss
{"title":"具有ALOGTIME硬词问题和PSPACE完全压缩词问题的组","authors":"L. Bartholdi, Michael Figelius, Markus Lohrey, A. Weiss","doi":"10.1145/3569708","DOIUrl":null,"url":null,"abstract":"We give lower bounds on the complexity of the word problem for a large class of non-solvable infinite groups that we call strongly efficiently non-solvable groups. This class includes free groups, Grigorchuk’s group, and Thompson’s groups. We prove that these groups have an NC1-hard word problem and that for some of them (including Grigorchuk’s group and Thompson’s groups) the compressed word problem (which is equivalent to the circuit evaluation problem) is PSPACE-complete.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"14 1","pages":"1 - 41"},"PeriodicalIF":0.8000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Groups with ALOGTIME-hard Word Problems and PSPACE-complete Compressed Word Problems\",\"authors\":\"L. Bartholdi, Michael Figelius, Markus Lohrey, A. Weiss\",\"doi\":\"10.1145/3569708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give lower bounds on the complexity of the word problem for a large class of non-solvable infinite groups that we call strongly efficiently non-solvable groups. This class includes free groups, Grigorchuk’s group, and Thompson’s groups. We prove that these groups have an NC1-hard word problem and that for some of them (including Grigorchuk’s group and Thompson’s groups) the compressed word problem (which is equivalent to the circuit evaluation problem) is PSPACE-complete.\",\"PeriodicalId\":44045,\"journal\":{\"name\":\"ACM Transactions on Computation Theory\",\"volume\":\"14 1\",\"pages\":\"1 - 41\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3569708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 8

摘要

我们给出了一大类不可解无限群的字问题复杂性的下界,我们称之为强有效不可解群。该类包括自由组、格里高丘克组和汤普森组。我们证明了这些群有一个NC1硬字问题,并且对于其中的一些群(包括Grigorchuk群和Thompson群),压缩字问题(相当于电路评估问题)是PSPACE完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Groups with ALOGTIME-hard Word Problems and PSPACE-complete Compressed Word Problems
We give lower bounds on the complexity of the word problem for a large class of non-solvable infinite groups that we call strongly efficiently non-solvable groups. This class includes free groups, Grigorchuk’s group, and Thompson’s groups. We prove that these groups have an NC1-hard word problem and that for some of them (including Grigorchuk’s group and Thompson’s groups) the compressed word problem (which is equivalent to the circuit evaluation problem) is PSPACE-complete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Computation Theory
ACM Transactions on Computation Theory COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.30
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信