{"title":"基于景观结构模型的德国勃兰登堡风蚀风险估算","authors":"Roger Funk, Lidia Völker, Detlef Deumlich","doi":"10.1016/j.aeolia.2023.100878","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents the development, adaptive improvement and use of the method to estimate the wind erosion risk in Germany for Cross Compliance (CC) regulations, based on the German standard DIN19706. It is illustrated by the example of the Federal State of Brandenburg. A landscape structure model was developed which calculates the sheltering effects of landscape elements. Basic inputs are the heights of all landscape elements and the frequencies and directions of erosive winds. In combination with the soil map of erodibility the wind erosion risk is derived in a high spatial resolution according to the CC requirements. In addition to improving the input data in terms of its spatial resolution by using air-borne laser scanning data, an innovative approach is presented which derives the sheltered areas behind landscape elements from the transport capacities of wind speeds above a threshold. Thus, our analysis represents one of the most comprehensive wind erosion assessment of cropland that can be used for landscape structure assessment well beyond CC use. The derivation of effective protection zones from the frequencies of erosive winds when critical thresholds are adjusted represents an innovative approach that provides an objective and transferable assessment of wind protection of landscape features in different wind regimes.</p></div>","PeriodicalId":49246,"journal":{"name":"Aeolian Research","volume":"62 ","pages":"Article 100878"},"PeriodicalIF":3.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Landscape structure model based estimation of the wind erosion risk in Brandenburg, Germany\",\"authors\":\"Roger Funk, Lidia Völker, Detlef Deumlich\",\"doi\":\"10.1016/j.aeolia.2023.100878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper presents the development, adaptive improvement and use of the method to estimate the wind erosion risk in Germany for Cross Compliance (CC) regulations, based on the German standard DIN19706. It is illustrated by the example of the Federal State of Brandenburg. A landscape structure model was developed which calculates the sheltering effects of landscape elements. Basic inputs are the heights of all landscape elements and the frequencies and directions of erosive winds. In combination with the soil map of erodibility the wind erosion risk is derived in a high spatial resolution according to the CC requirements. In addition to improving the input data in terms of its spatial resolution by using air-borne laser scanning data, an innovative approach is presented which derives the sheltered areas behind landscape elements from the transport capacities of wind speeds above a threshold. Thus, our analysis represents one of the most comprehensive wind erosion assessment of cropland that can be used for landscape structure assessment well beyond CC use. The derivation of effective protection zones from the frequencies of erosive winds when critical thresholds are adjusted represents an innovative approach that provides an objective and transferable assessment of wind protection of landscape features in different wind regimes.</p></div>\",\"PeriodicalId\":49246,\"journal\":{\"name\":\"Aeolian Research\",\"volume\":\"62 \",\"pages\":\"Article 100878\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aeolian Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875963723000265\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeolian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875963723000265","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Landscape structure model based estimation of the wind erosion risk in Brandenburg, Germany
The paper presents the development, adaptive improvement and use of the method to estimate the wind erosion risk in Germany for Cross Compliance (CC) regulations, based on the German standard DIN19706. It is illustrated by the example of the Federal State of Brandenburg. A landscape structure model was developed which calculates the sheltering effects of landscape elements. Basic inputs are the heights of all landscape elements and the frequencies and directions of erosive winds. In combination with the soil map of erodibility the wind erosion risk is derived in a high spatial resolution according to the CC requirements. In addition to improving the input data in terms of its spatial resolution by using air-borne laser scanning data, an innovative approach is presented which derives the sheltered areas behind landscape elements from the transport capacities of wind speeds above a threshold. Thus, our analysis represents one of the most comprehensive wind erosion assessment of cropland that can be used for landscape structure assessment well beyond CC use. The derivation of effective protection zones from the frequencies of erosive winds when critical thresholds are adjusted represents an innovative approach that provides an objective and transferable assessment of wind protection of landscape features in different wind regimes.
期刊介绍:
The scope of Aeolian Research includes the following topics:
• Fundamental Aeolian processes, including sand and dust entrainment, transport and deposition of sediment
• Modeling and field studies of Aeolian processes
• Instrumentation/measurement in the field and lab
• Practical applications including environmental impacts and erosion control
• Aeolian landforms, geomorphology and paleoenvironments
• Dust-atmosphere/cloud interactions.