{"title":"填充焊丝对钨极气体电弧的影响——第三部分——填充焊丝GTAW工艺稳定性控制","authors":"S. Zou, Zhijiang Wang, Yue Cao, Shengsun Hu","doi":"10.29391/2023.102.005","DOIUrl":null,"url":null,"abstract":"Stability control of the welding process is necessary to guarantee weld quality. In this study, a sensing method that collects both global and local arc information was proposed to conveniently monitor metal transfer stability during gas tungsten arc welding. This sensing method was also used to monitor the stability of the weld surface height by sensing the change in global arc length. The stability factor (fmt) was calculated to quantify the metal transfer stability. The characteristic signal (U*), which represents the average global arc voltage in the presence of a liquid bridge, was extracted to characterize the change in arc length by decoupling the dynamic interference signal of metal transfer. Both a fuzzy controller and a proportional integral derivative controller were designed to control the metal transfer stability and the weld surface height. The preliminary control experiments proved the effectiveness and potential of the proposed sensing and control strategies.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Filler Wire Intervention on the Gas Tungsten Arc: Part III — Process Stability Control of Wire-Filled GTAW\",\"authors\":\"S. Zou, Zhijiang Wang, Yue Cao, Shengsun Hu\",\"doi\":\"10.29391/2023.102.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability control of the welding process is necessary to guarantee weld quality. In this study, a sensing method that collects both global and local arc information was proposed to conveniently monitor metal transfer stability during gas tungsten arc welding. This sensing method was also used to monitor the stability of the weld surface height by sensing the change in global arc length. The stability factor (fmt) was calculated to quantify the metal transfer stability. The characteristic signal (U*), which represents the average global arc voltage in the presence of a liquid bridge, was extracted to characterize the change in arc length by decoupling the dynamic interference signal of metal transfer. Both a fuzzy controller and a proportional integral derivative controller were designed to control the metal transfer stability and the weld surface height. The preliminary control experiments proved the effectiveness and potential of the proposed sensing and control strategies.\",\"PeriodicalId\":23681,\"journal\":{\"name\":\"Welding Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.29391/2023.102.005\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2023.102.005","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effects of Filler Wire Intervention on the Gas Tungsten Arc: Part III — Process Stability Control of Wire-Filled GTAW
Stability control of the welding process is necessary to guarantee weld quality. In this study, a sensing method that collects both global and local arc information was proposed to conveniently monitor metal transfer stability during gas tungsten arc welding. This sensing method was also used to monitor the stability of the weld surface height by sensing the change in global arc length. The stability factor (fmt) was calculated to quantify the metal transfer stability. The characteristic signal (U*), which represents the average global arc voltage in the presence of a liquid bridge, was extracted to characterize the change in arc length by decoupling the dynamic interference signal of metal transfer. Both a fuzzy controller and a proportional integral derivative controller were designed to control the metal transfer stability and the weld surface height. The preliminary control experiments proved the effectiveness and potential of the proposed sensing and control strategies.
期刊介绍:
The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction.
Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.