I. Kocić, M. Kocić, I. Rusiecka, Adam Kocić, Eliza Kocić
{"title":"药理学的深度学习:机遇与威胁","authors":"I. Kocić, M. Kocić, I. Rusiecka, Adam Kocić, Eliza Kocić","doi":"10.31373/ejtcm/149217","DOIUrl":null,"url":null,"abstract":"Introduction: This review aims to present briefly the new horizon opened to pharmacology by the deep learning (DL) technology, but also to underline the most important threats and limitations of this method. Material and Methods: We searched multiple databases for articles published before May 2021 according to the preferred reported item related to deep learning and drug research. Out of the 267 articles retrieved, we included 49 in the final review Results: DL and other different types of artificial intelligence have recently entered all spheres of science, taking an increasingly central position in the decision-making processes, also in pharmacology. Hence, there is a need for better understanding of these technologies. The basic differences between AI (artificial intelligence), DL and ML (machine learning) are explained. Additionally, the authors try to highlight the role of deep learning methods in drug research and development as well as in improving the safety of pharmacotherapy. Finally, future directions of DL in pharmacology were outlined as well as possible misuses of it. Conclusion: DL is a promising and powerful tool for comprehensive analysis of big data related to all fields of pharmacology, however it has to be used carefully.","PeriodicalId":52409,"journal":{"name":"European Journal of Translational and Clinical Medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning in pharmacology: opportunities and threats\",\"authors\":\"I. Kocić, M. Kocić, I. Rusiecka, Adam Kocić, Eliza Kocić\",\"doi\":\"10.31373/ejtcm/149217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: This review aims to present briefly the new horizon opened to pharmacology by the deep learning (DL) technology, but also to underline the most important threats and limitations of this method. Material and Methods: We searched multiple databases for articles published before May 2021 according to the preferred reported item related to deep learning and drug research. Out of the 267 articles retrieved, we included 49 in the final review Results: DL and other different types of artificial intelligence have recently entered all spheres of science, taking an increasingly central position in the decision-making processes, also in pharmacology. Hence, there is a need for better understanding of these technologies. The basic differences between AI (artificial intelligence), DL and ML (machine learning) are explained. Additionally, the authors try to highlight the role of deep learning methods in drug research and development as well as in improving the safety of pharmacotherapy. Finally, future directions of DL in pharmacology were outlined as well as possible misuses of it. Conclusion: DL is a promising and powerful tool for comprehensive analysis of big data related to all fields of pharmacology, however it has to be used carefully.\",\"PeriodicalId\":52409,\"journal\":{\"name\":\"European Journal of Translational and Clinical Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Translational and Clinical Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31373/ejtcm/149217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Translational and Clinical Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31373/ejtcm/149217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Deep learning in pharmacology: opportunities and threats
Introduction: This review aims to present briefly the new horizon opened to pharmacology by the deep learning (DL) technology, but also to underline the most important threats and limitations of this method. Material and Methods: We searched multiple databases for articles published before May 2021 according to the preferred reported item related to deep learning and drug research. Out of the 267 articles retrieved, we included 49 in the final review Results: DL and other different types of artificial intelligence have recently entered all spheres of science, taking an increasingly central position in the decision-making processes, also in pharmacology. Hence, there is a need for better understanding of these technologies. The basic differences between AI (artificial intelligence), DL and ML (machine learning) are explained. Additionally, the authors try to highlight the role of deep learning methods in drug research and development as well as in improving the safety of pharmacotherapy. Finally, future directions of DL in pharmacology were outlined as well as possible misuses of it. Conclusion: DL is a promising and powerful tool for comprehensive analysis of big data related to all fields of pharmacology, however it has to be used carefully.