{"title":"GANSER:一种用于基于EEG的情绪识别的自监督数据增强框架","authors":"Zhi Zhang;Yan Liu;Sheng-hua Zhong","doi":"10.1109/TAFFC.2022.3170369","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG)-based affective computing has a scarcity problem. As a result, it is difficult to build effective, highly accurate and stable models using machine learning algorithms, especially deep learning models. Data augmentation has recently shown performance improvements in deep learning models with increased accuracy, stability and reduced overfitting. In this paper, we propose a novel data augmentation framework, named the generative adversarial network-based self-supervised data augmentation (GANSER). As the first to combine adversarial training with self-supervised learning for EEG-based emotion recognition, the proposed framework generates high-quality and high-diversity simulated EEG samples. In particular, we utilize adversarial training to learn an EEG generator and force the generated EEG signals to approximate the distribution of real samples, ensuring the quality of the augmented samples. A transformation operation is employed to mask parts of the EEG signals and force the generator to synthesize potential EEG signals based on the unmasked parts to produce a wide variety of samples. A masking possibility during transformation is introduced as prior knowledge to generalize the classifier for the augmented sample space. Finally, numerous experiments demonstrate that our proposed method can improve emotion recognition with an increase in performance and achieve state-of-the-art results.","PeriodicalId":13131,"journal":{"name":"IEEE Transactions on Affective Computing","volume":"14 3","pages":"2048-2063"},"PeriodicalIF":9.6000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"GANSER: A Self-Supervised Data Augmentation Framework for EEG-Based Emotion Recognition\",\"authors\":\"Zhi Zhang;Yan Liu;Sheng-hua Zhong\",\"doi\":\"10.1109/TAFFC.2022.3170369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalography (EEG)-based affective computing has a scarcity problem. As a result, it is difficult to build effective, highly accurate and stable models using machine learning algorithms, especially deep learning models. Data augmentation has recently shown performance improvements in deep learning models with increased accuracy, stability and reduced overfitting. In this paper, we propose a novel data augmentation framework, named the generative adversarial network-based self-supervised data augmentation (GANSER). As the first to combine adversarial training with self-supervised learning for EEG-based emotion recognition, the proposed framework generates high-quality and high-diversity simulated EEG samples. In particular, we utilize adversarial training to learn an EEG generator and force the generated EEG signals to approximate the distribution of real samples, ensuring the quality of the augmented samples. A transformation operation is employed to mask parts of the EEG signals and force the generator to synthesize potential EEG signals based on the unmasked parts to produce a wide variety of samples. A masking possibility during transformation is introduced as prior knowledge to generalize the classifier for the augmented sample space. Finally, numerous experiments demonstrate that our proposed method can improve emotion recognition with an increase in performance and achieve state-of-the-art results.\",\"PeriodicalId\":13131,\"journal\":{\"name\":\"IEEE Transactions on Affective Computing\",\"volume\":\"14 3\",\"pages\":\"2048-2063\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Affective Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9763358/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Affective Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9763358/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
GANSER: A Self-Supervised Data Augmentation Framework for EEG-Based Emotion Recognition
Electroencephalography (EEG)-based affective computing has a scarcity problem. As a result, it is difficult to build effective, highly accurate and stable models using machine learning algorithms, especially deep learning models. Data augmentation has recently shown performance improvements in deep learning models with increased accuracy, stability and reduced overfitting. In this paper, we propose a novel data augmentation framework, named the generative adversarial network-based self-supervised data augmentation (GANSER). As the first to combine adversarial training with self-supervised learning for EEG-based emotion recognition, the proposed framework generates high-quality and high-diversity simulated EEG samples. In particular, we utilize adversarial training to learn an EEG generator and force the generated EEG signals to approximate the distribution of real samples, ensuring the quality of the augmented samples. A transformation operation is employed to mask parts of the EEG signals and force the generator to synthesize potential EEG signals based on the unmasked parts to produce a wide variety of samples. A masking possibility during transformation is introduced as prior knowledge to generalize the classifier for the augmented sample space. Finally, numerous experiments demonstrate that our proposed method can improve emotion recognition with an increase in performance and achieve state-of-the-art results.
期刊介绍:
The IEEE Transactions on Affective Computing is an international and interdisciplinary journal. Its primary goal is to share research findings on the development of systems capable of recognizing, interpreting, and simulating human emotions and related affective phenomena. The journal publishes original research on the underlying principles and theories that explain how and why affective factors shape human-technology interactions. It also focuses on how techniques for sensing and simulating affect can enhance our understanding of human emotions and processes. Additionally, the journal explores the design, implementation, and evaluation of systems that prioritize the consideration of affect in their usability. We also welcome surveys of existing work that provide new perspectives on the historical and future directions of this field.