Zhehui Ji , Xing Lu , Mingyang Xue , Yuding Fan , Juan Tian , Lixue Dong , Chuanzhong Zhu , Hua Wen , Ming Jiang
{"title":"黄颡鱼日粮中宿主相关芽孢杆菌的益生菌效应♀ ×瓦氏黄颡鱼♂)","authors":"Zhehui Ji , Xing Lu , Mingyang Xue , Yuding Fan , Juan Tian , Lixue Dong , Chuanzhong Zhu , Hua Wen , Ming Jiang","doi":"10.1016/j.aninu.2023.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>This study was to evaluate the potential of a host-associated <em>Bacillus velezensis</em> as a probiotic for hybrid yellow catfish (<em>Pelteobagrus fulvidraco ♀</em> × <em>Pelteobagrus vachelli</em> ♂). Diets (B0 to B5) containing 0, 0.90 × 10<sup>8</sup>, 0.80 × 10<sup>9</sup>, 0.85 × 10<sup>10</sup>, 0.90 × 10<sup>11</sup>, 0.83 × 10<sup>12</sup> CFU/kg <em>B</em>. <em>velezensis</em> YFI-E109 were fed to the fish with initial weight (3.07 ± 0.08 g) in a recirculating aquaculture system for six weeks with three replicates, respectively. Probiotic effects were analyzed based on growth, body composition, liver and gut morphology, gut microbiome, and liver metabolome. Analysis of the bacterial genome has shown that the most abundant genes in <em>B</em>. <em>velezensis</em> YFI-E109 were distributed in carbohydrate and amino acid metabolism. Fish in groups B3 and B4 had better growth performance, and higher intestinal amylase (AMS) and lipase (LPS) activities compared with other groups (<em>P</em> < 0.05). Fish in groups B0 and B5 showed significant liver damage, while this status improved in group B3. The liver malondialdehyde (MDA) content in group B3 was lower than that in other groups (<em>P</em> < 0.05). The abundance of <em>Mycoplasma, Ralstonia</em> and <em>Ac</em><em>inetobacter</em> was significantly reduced in B3 and B5 compared to B0. The amino acid and carbohydrate metabolism pathways were enriched in group B3 compared with group B0. In conclusion, dietary <em>B. velezensis</em> YFI-E109 supplementation has the potential to improve growth, liver metabolism, and liver and gut health, and reshape the gut microbiome of hybrid yellow catfish. Excessive <em>B. velezensis</em> YFI-E109 reduced the prebiotic effects. The recommended dietary supplementation of <em>B. velezensis</em> YFI-E109 is 0.31 × 10<sup>10</sup> to 0.77 × 10<sup>11</sup> CFU/kg for hybrid yellow catfish according to the quadratic regression method by plotting specific growth rate (SGR), feed conversion ratio (FCR), MDA and activities of AMS against dietary <em>B. velezensis</em> YFI-E109 levels.</p></div>","PeriodicalId":62604,"journal":{"name":"Animal Nutrition","volume":"15 ","pages":"Pages 114-125"},"PeriodicalIF":6.3000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405654523001014/pdfft?md5=f864ea5b277dcc74aed284035fbab718&pid=1-s2.0-S2405654523001014-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The probiotic effects of host-associated Bacillus velezensis in diets for hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂)\",\"authors\":\"Zhehui Ji , Xing Lu , Mingyang Xue , Yuding Fan , Juan Tian , Lixue Dong , Chuanzhong Zhu , Hua Wen , Ming Jiang\",\"doi\":\"10.1016/j.aninu.2023.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study was to evaluate the potential of a host-associated <em>Bacillus velezensis</em> as a probiotic for hybrid yellow catfish (<em>Pelteobagrus fulvidraco ♀</em> × <em>Pelteobagrus vachelli</em> ♂). Diets (B0 to B5) containing 0, 0.90 × 10<sup>8</sup>, 0.80 × 10<sup>9</sup>, 0.85 × 10<sup>10</sup>, 0.90 × 10<sup>11</sup>, 0.83 × 10<sup>12</sup> CFU/kg <em>B</em>. <em>velezensis</em> YFI-E109 were fed to the fish with initial weight (3.07 ± 0.08 g) in a recirculating aquaculture system for six weeks with three replicates, respectively. Probiotic effects were analyzed based on growth, body composition, liver and gut morphology, gut microbiome, and liver metabolome. Analysis of the bacterial genome has shown that the most abundant genes in <em>B</em>. <em>velezensis</em> YFI-E109 were distributed in carbohydrate and amino acid metabolism. Fish in groups B3 and B4 had better growth performance, and higher intestinal amylase (AMS) and lipase (LPS) activities compared with other groups (<em>P</em> < 0.05). Fish in groups B0 and B5 showed significant liver damage, while this status improved in group B3. The liver malondialdehyde (MDA) content in group B3 was lower than that in other groups (<em>P</em> < 0.05). The abundance of <em>Mycoplasma, Ralstonia</em> and <em>Ac</em><em>inetobacter</em> was significantly reduced in B3 and B5 compared to B0. The amino acid and carbohydrate metabolism pathways were enriched in group B3 compared with group B0. In conclusion, dietary <em>B. velezensis</em> YFI-E109 supplementation has the potential to improve growth, liver metabolism, and liver and gut health, and reshape the gut microbiome of hybrid yellow catfish. Excessive <em>B. velezensis</em> YFI-E109 reduced the prebiotic effects. The recommended dietary supplementation of <em>B. velezensis</em> YFI-E109 is 0.31 × 10<sup>10</sup> to 0.77 × 10<sup>11</sup> CFU/kg for hybrid yellow catfish according to the quadratic regression method by plotting specific growth rate (SGR), feed conversion ratio (FCR), MDA and activities of AMS against dietary <em>B. velezensis</em> YFI-E109 levels.</p></div>\",\"PeriodicalId\":62604,\"journal\":{\"name\":\"Animal Nutrition\",\"volume\":\"15 \",\"pages\":\"Pages 114-125\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405654523001014/pdfft?md5=f864ea5b277dcc74aed284035fbab718&pid=1-s2.0-S2405654523001014-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Nutrition\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405654523001014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405654523001014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The probiotic effects of host-associated Bacillus velezensis in diets for hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂)
This study was to evaluate the potential of a host-associated Bacillus velezensis as a probiotic for hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂). Diets (B0 to B5) containing 0, 0.90 × 108, 0.80 × 109, 0.85 × 1010, 0.90 × 1011, 0.83 × 1012 CFU/kg B. velezensis YFI-E109 were fed to the fish with initial weight (3.07 ± 0.08 g) in a recirculating aquaculture system for six weeks with three replicates, respectively. Probiotic effects were analyzed based on growth, body composition, liver and gut morphology, gut microbiome, and liver metabolome. Analysis of the bacterial genome has shown that the most abundant genes in B. velezensis YFI-E109 were distributed in carbohydrate and amino acid metabolism. Fish in groups B3 and B4 had better growth performance, and higher intestinal amylase (AMS) and lipase (LPS) activities compared with other groups (P < 0.05). Fish in groups B0 and B5 showed significant liver damage, while this status improved in group B3. The liver malondialdehyde (MDA) content in group B3 was lower than that in other groups (P < 0.05). The abundance of Mycoplasma, Ralstonia and Acinetobacter was significantly reduced in B3 and B5 compared to B0. The amino acid and carbohydrate metabolism pathways were enriched in group B3 compared with group B0. In conclusion, dietary B. velezensis YFI-E109 supplementation has the potential to improve growth, liver metabolism, and liver and gut health, and reshape the gut microbiome of hybrid yellow catfish. Excessive B. velezensis YFI-E109 reduced the prebiotic effects. The recommended dietary supplementation of B. velezensis YFI-E109 is 0.31 × 1010 to 0.77 × 1011 CFU/kg for hybrid yellow catfish according to the quadratic regression method by plotting specific growth rate (SGR), feed conversion ratio (FCR), MDA and activities of AMS against dietary B. velezensis YFI-E109 levels.
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to primarily to the nutrition of farm animals and aquatic species. More applied aspects of animal nutrition, such as the evaluation of novel ingredients, feed additives and feed safety will also be considered but it is expected that such studies will have a strong nutritional focus. Animal Nutrition is indexed in SCIE, PubMed Central, Scopus, DOAJ, etc.