{"title":"低温动力循环工作流体混合物及其热力学模型综述","authors":"C. J. Noriega-Sánchez","doi":"10.22463/2011642X.2340","DOIUrl":null,"url":null,"abstract":"This paper summarizes a bibliographic review of the main articles published in recent years in the power cycles area, with special emphasis on working fluid mixtures. Likewise, the most relevant theoretical fundaments for performing the mathematical modeling of this class of working fluids and, therefore, obtaining their thermodynamic properties, as well as the experimental methods used in the characterization of the phase equilibrium that allow obtaining the adjustment parameters are covered in this article.","PeriodicalId":34344,"journal":{"name":"Revista Ingenio","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of working fluid mixtures for low temperature power cycles and their thermodynamic modeling\",\"authors\":\"C. J. Noriega-Sánchez\",\"doi\":\"10.22463/2011642X.2340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper summarizes a bibliographic review of the main articles published in recent years in the power cycles area, with special emphasis on working fluid mixtures. Likewise, the most relevant theoretical fundaments for performing the mathematical modeling of this class of working fluids and, therefore, obtaining their thermodynamic properties, as well as the experimental methods used in the characterization of the phase equilibrium that allow obtaining the adjustment parameters are covered in this article.\",\"PeriodicalId\":34344,\"journal\":{\"name\":\"Revista Ingenio\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Ingenio\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22463/2011642X.2340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Ingenio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22463/2011642X.2340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A review of working fluid mixtures for low temperature power cycles and their thermodynamic modeling
This paper summarizes a bibliographic review of the main articles published in recent years in the power cycles area, with special emphasis on working fluid mixtures. Likewise, the most relevant theoretical fundaments for performing the mathematical modeling of this class of working fluids and, therefore, obtaining their thermodynamic properties, as well as the experimental methods used in the characterization of the phase equilibrium that allow obtaining the adjustment parameters are covered in this article.