采用光学相机通信的单向三维室内定位系统

IF 2.3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Othman Isam Younus, Neha Chaudhary, Zabih Ghassemlooy, Luis Nero Alves, Stanislav Zvanovec, Dimitrios Pattas, Vasilis K. Papanikolaou
{"title":"采用光学相机通信的单向三维室内定位系统","authors":"Othman Isam Younus,&nbsp;Neha Chaudhary,&nbsp;Zabih Ghassemlooy,&nbsp;Luis Nero Alves,&nbsp;Stanislav Zvanovec,&nbsp;Dimitrios Pattas,&nbsp;Vasilis K. Papanikolaou","doi":"10.1049/ote2.12094","DOIUrl":null,"url":null,"abstract":"<p>This article investigates the use of a visible light positioning system in an indoor environment to provide a three dimensional (3D) high-accuracy solution. The proposed system leveraged the use of a single light-emitting diode and an image sensor at the transmitter and the receiver (Rx) respectively. The proposed system can retrieve the 3D coordinate of the Rx using a combination of the angle of arrival and received signal strength (RSS). To mitigate the error induced by the lens at the Rx, a novel method is proposed and experimentally tested. The authors show that, the proposed method outperforms previously reported RSS under all circumstances and it is immune to varying exposure times within the standard range of 250 µs to 4 ms. The authors experimentally demonstrate that the proposed algorithm can achieve a 3D root mean squared error of 7.56 cm.</p>","PeriodicalId":13408,"journal":{"name":"Iet Optoelectronics","volume":"17 4","pages":"110-119"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12094","citationCount":"0","resultStr":"{\"title\":\"A unilateral 3D indoor positioning system employing optical camera communications\",\"authors\":\"Othman Isam Younus,&nbsp;Neha Chaudhary,&nbsp;Zabih Ghassemlooy,&nbsp;Luis Nero Alves,&nbsp;Stanislav Zvanovec,&nbsp;Dimitrios Pattas,&nbsp;Vasilis K. Papanikolaou\",\"doi\":\"10.1049/ote2.12094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article investigates the use of a visible light positioning system in an indoor environment to provide a three dimensional (3D) high-accuracy solution. The proposed system leveraged the use of a single light-emitting diode and an image sensor at the transmitter and the receiver (Rx) respectively. The proposed system can retrieve the 3D coordinate of the Rx using a combination of the angle of arrival and received signal strength (RSS). To mitigate the error induced by the lens at the Rx, a novel method is proposed and experimentally tested. The authors show that, the proposed method outperforms previously reported RSS under all circumstances and it is immune to varying exposure times within the standard range of 250 µs to 4 ms. The authors experimentally demonstrate that the proposed algorithm can achieve a 3D root mean squared error of 7.56 cm.</p>\",\"PeriodicalId\":13408,\"journal\":{\"name\":\"Iet Optoelectronics\",\"volume\":\"17 4\",\"pages\":\"110-119\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12094\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Optoelectronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12094\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Optoelectronics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12094","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在室内环境中使用可见光定位系统来提供三维(3D)高精度解决方案。所提出的系统利用了在发射器和接收器(Rx)分别使用单个发光二极管和图像传感器。该系统可以使用到达角度和接收信号强度(RSS)的组合来检索Rx的三维坐标。为了减轻透镜在Rx处引起的误差,提出了一种新的方法并进行了实验验证。作者表明,所提出的方法在所有情况下都优于先前报道的RSS,并且在250µs至4 ms的标准范围内不受不同暴露时间的影响。实验表明,该算法可以实现7.56 cm的三维均方根误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A unilateral 3D indoor positioning system employing optical camera communications

A unilateral 3D indoor positioning system employing optical camera communications

This article investigates the use of a visible light positioning system in an indoor environment to provide a three dimensional (3D) high-accuracy solution. The proposed system leveraged the use of a single light-emitting diode and an image sensor at the transmitter and the receiver (Rx) respectively. The proposed system can retrieve the 3D coordinate of the Rx using a combination of the angle of arrival and received signal strength (RSS). To mitigate the error induced by the lens at the Rx, a novel method is proposed and experimentally tested. The authors show that, the proposed method outperforms previously reported RSS under all circumstances and it is immune to varying exposure times within the standard range of 250 µs to 4 ms. The authors experimentally demonstrate that the proposed algorithm can achieve a 3D root mean squared error of 7.56 cm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Optoelectronics
Iet Optoelectronics 工程技术-电信学
CiteScore
4.50
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: IET Optoelectronics publishes state of the art research papers in the field of optoelectronics and photonics. The topics that are covered by the journal include optical and optoelectronic materials, nanophotonics, metamaterials and photonic crystals, light sources (e.g. LEDs, lasers and devices for lighting), optical modulation and multiplexing, optical fibres, cables and connectors, optical amplifiers, photodetectors and optical receivers, photonic integrated circuits, photonic systems, optical signal processing and holography and displays. Most of the papers published describe original research from universities and industrial and government laboratories. However correspondence suggesting review papers and tutorials is welcomed, as are suggestions for special issues. IET Optoelectronics covers but is not limited to the following topics: Optical and optoelectronic materials Light sources, including LEDs, lasers and devices for lighting Optical modulation and multiplexing Optical fibres, cables and connectors Optical amplifiers Photodetectors and optical receivers Photonic integrated circuits Nanophotonics and photonic crystals Optical signal processing Holography Displays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信