封面图片:ChemPlot,一个用于化学空间可视化的Python库(Chem.Methods 7/2022)

IF 6.1 Q1 CHEMISTRY, MULTIDISCIPLINARY
Murat Cihan Sorkun, Dajt Mullaj, J. M. Vianney A. Koelman, Süleyman Er
{"title":"封面图片:ChemPlot,一个用于化学空间可视化的Python库(Chem.Methods 7/2022)","authors":"Murat Cihan Sorkun,&nbsp;Dajt Mullaj,&nbsp;J. M. Vianney A. Koelman,&nbsp;Süleyman Er","doi":"10.1002/cmtd.202200039","DOIUrl":null,"url":null,"abstract":"<p><b>The Front Cover</b> shows the ChemPlot-visualized reduced chemical space of molecules enhanced with two-dimensional illustrations of molecules. In addition to being easy-to-use, free and open source, a noteworthy feature of ChemPlot is the application of tailored similarity for the property-sensitive visualization of chemical spaces. ChemPlot streamlines the analysis of molecular datasets by reducing the information to human perception level, tackling the activity/property cliff problem, and facilitating the assessment of the applicability domain of machine learning models in molecular studies. More information can be found in the Research Article by Murat C. Sorkun et al.<figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"2 7","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200039","citationCount":"0","resultStr":"{\"title\":\"Cover Picture: ChemPlot, a Python Library for Chemical Space Visualization (Chem. Methods 7/2022)\",\"authors\":\"Murat Cihan Sorkun,&nbsp;Dajt Mullaj,&nbsp;J. M. Vianney A. Koelman,&nbsp;Süleyman Er\",\"doi\":\"10.1002/cmtd.202200039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>The Front Cover</b> shows the ChemPlot-visualized reduced chemical space of molecules enhanced with two-dimensional illustrations of molecules. In addition to being easy-to-use, free and open source, a noteworthy feature of ChemPlot is the application of tailored similarity for the property-sensitive visualization of chemical spaces. ChemPlot streamlines the analysis of molecular datasets by reducing the information to human perception level, tackling the activity/property cliff problem, and facilitating the assessment of the applicability domain of machine learning models in molecular studies. More information can be found in the Research Article by Murat C. Sorkun et al.<figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":72562,\"journal\":{\"name\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"volume\":\"2 7\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

前封面显示了chopt可视化的分子化学空间,增强了分子的二维插图。除了易于使用、免费和开源之外,ChemPlot的一个值得注意的特性是,它为化学空间的属性敏感可视化应用了量身定制的相似性。ChemPlot通过将信息降低到人类感知水平,解决活动/属性悬崖问题,以及促进机器学习模型在分子研究中的适用性评估,简化了分子数据集的分析。更多信息可以在Murat C. Sorkun等人的研究文章中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cover Picture: ChemPlot, a Python Library for Chemical Space Visualization (Chem. Methods 7/2022)

Cover Picture: ChemPlot, a Python Library for Chemical Space Visualization (Chem. Methods 7/2022)

The Front Cover shows the ChemPlot-visualized reduced chemical space of molecules enhanced with two-dimensional illustrations of molecules. In addition to being easy-to-use, free and open source, a noteworthy feature of ChemPlot is the application of tailored similarity for the property-sensitive visualization of chemical spaces. ChemPlot streamlines the analysis of molecular datasets by reducing the information to human perception level, tackling the activity/property cliff problem, and facilitating the assessment of the applicability domain of machine learning models in molecular studies. More information can be found in the Research Article by Murat C. Sorkun et al.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信