随机CNN结构:提高深度学习泛化能力的工具

IF 2.4 4区 计算机科学
B. Świderski, S. Osowski, Grzegorz Gwardys, J. Kurek, M. Słowińska, I. Lugowska
{"title":"随机CNN结构:提高深度学习泛化能力的工具","authors":"B. Świderski, S. Osowski, Grzegorz Gwardys, J. Kurek, M. Słowińska, I. Lugowska","doi":"10.21203/RS.3.RS-277475/V1","DOIUrl":null,"url":null,"abstract":"The paper presents a novel approach for designing the CNN structure of improved generalization capability in the presence of a small population of learning data. Unlike the classical methods for building CNN, we propose to introduce some randomness in the choice of layers with a different type of nonlinear activation function. The image processing in these layers is performed using either the ReLU or the softplus function. This choice is random. The randomness introduced in the network structure can be interpreted as a special form of regularization. Experiments performed on the detection of images belonging to either melanoma or non-melanoma cases have shown a significant improvement in average quality measures such as accuracy, sensitivity, precision, and area under the ROC curve.","PeriodicalId":49322,"journal":{"name":"Eurasip Journal on Image and Video Processing","volume":"2022 1","pages":"1-12"},"PeriodicalIF":2.4000,"publicationDate":"2021-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Random CNN structure: tool to increase generalization ability in deep learning\",\"authors\":\"B. Świderski, S. Osowski, Grzegorz Gwardys, J. Kurek, M. Słowińska, I. Lugowska\",\"doi\":\"10.21203/RS.3.RS-277475/V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a novel approach for designing the CNN structure of improved generalization capability in the presence of a small population of learning data. Unlike the classical methods for building CNN, we propose to introduce some randomness in the choice of layers with a different type of nonlinear activation function. The image processing in these layers is performed using either the ReLU or the softplus function. This choice is random. The randomness introduced in the network structure can be interpreted as a special form of regularization. Experiments performed on the detection of images belonging to either melanoma or non-melanoma cases have shown a significant improvement in average quality measures such as accuracy, sensitivity, precision, and area under the ROC curve.\",\"PeriodicalId\":49322,\"journal\":{\"name\":\"Eurasip Journal on Image and Video Processing\",\"volume\":\"2022 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Image and Video Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.21203/RS.3.RS-277475/V1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Image and Video Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-277475/V1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的方法来设计在少量学习数据存在的情况下具有改进泛化能力的CNN结构。与构建CNN的经典方法不同,我们建议在选择具有不同类型非线性激活函数的层时引入一些随机性。使用ReLU或softplus函数来执行这些层中的图像处理。这个选择是随机的。网络结构中引入的随机性可以被解释为一种特殊形式的正则化。对属于黑色素瘤或非黑色素瘤病例的图像进行检测的实验表明,平均质量指标(如准确度、灵敏度、精度和ROC曲线下面积)显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random CNN structure: tool to increase generalization ability in deep learning
The paper presents a novel approach for designing the CNN structure of improved generalization capability in the presence of a small population of learning data. Unlike the classical methods for building CNN, we propose to introduce some randomness in the choice of layers with a different type of nonlinear activation function. The image processing in these layers is performed using either the ReLU or the softplus function. This choice is random. The randomness introduced in the network structure can be interpreted as a special form of regularization. Experiments performed on the detection of images belonging to either melanoma or non-melanoma cases have shown a significant improvement in average quality measures such as accuracy, sensitivity, precision, and area under the ROC curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasip Journal on Image and Video Processing
Eurasip Journal on Image and Video Processing Engineering-Electrical and Electronic Engineering
CiteScore
7.10
自引率
0.00%
发文量
23
审稿时长
6.8 months
期刊介绍: EURASIP Journal on Image and Video Processing is intended for researchers from both academia and industry, who are active in the multidisciplinary field of image and video processing. The scope of the journal covers all theoretical and practical aspects of the domain, from basic research to development of application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信