{"title":"核物理中的量子蒙特卡罗方法:最新进展","authors":"J. Lynn, I. Tews, S. Gandolfi, A. Lovato","doi":"10.1146/annurev-nucl-101918-023600","DOIUrl":null,"url":null,"abstract":"In recent years, the combination of precise quantum Monte Carlo (QMC) methods with realistic nuclear interactions and consistent electroweak currents, in particular those constructed within effective field theories (EFTs), has led to new insights in light and medium-mass nuclei, neutron matter, and electroweak reactions. For example, with the same chiral interactions, QMC calculations can reproduce binding energies and radii for light nuclei, n–α scattering phase shifts, and the neutron matter equation of state. This compelling new body of work has been made possible both by advances in QMC methods for nuclear physics, which push the bounds of applicability to heavier nuclei and to asymmetric nuclear matter, and by the development of local chiral EFT interactions up to next-to-next-to-leading order and minimally nonlocal interactions including Δ degrees of freedom. In this review, we discuss these recent developments and give an overview of the exciting results for nuclei, neutron matter and neutron stars, and electroweak reactions.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2019-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-nucl-101918-023600","citationCount":"63","resultStr":"{\"title\":\"Quantum Monte Carlo Methods in Nuclear Physics: Recent Advances\",\"authors\":\"J. Lynn, I. Tews, S. Gandolfi, A. Lovato\",\"doi\":\"10.1146/annurev-nucl-101918-023600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the combination of precise quantum Monte Carlo (QMC) methods with realistic nuclear interactions and consistent electroweak currents, in particular those constructed within effective field theories (EFTs), has led to new insights in light and medium-mass nuclei, neutron matter, and electroweak reactions. For example, with the same chiral interactions, QMC calculations can reproduce binding energies and radii for light nuclei, n–α scattering phase shifts, and the neutron matter equation of state. This compelling new body of work has been made possible both by advances in QMC methods for nuclear physics, which push the bounds of applicability to heavier nuclei and to asymmetric nuclear matter, and by the development of local chiral EFT interactions up to next-to-next-to-leading order and minimally nonlocal interactions including Δ degrees of freedom. In this review, we discuss these recent developments and give an overview of the exciting results for nuclei, neutron matter and neutron stars, and electroweak reactions.\",\"PeriodicalId\":8090,\"journal\":{\"name\":\"Annual Review of Nuclear and Particle Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2019-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-nucl-101918-023600\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Nuclear and Particle Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-nucl-101918-023600\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-101918-023600","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Quantum Monte Carlo Methods in Nuclear Physics: Recent Advances
In recent years, the combination of precise quantum Monte Carlo (QMC) methods with realistic nuclear interactions and consistent electroweak currents, in particular those constructed within effective field theories (EFTs), has led to new insights in light and medium-mass nuclei, neutron matter, and electroweak reactions. For example, with the same chiral interactions, QMC calculations can reproduce binding energies and radii for light nuclei, n–α scattering phase shifts, and the neutron matter equation of state. This compelling new body of work has been made possible both by advances in QMC methods for nuclear physics, which push the bounds of applicability to heavier nuclei and to asymmetric nuclear matter, and by the development of local chiral EFT interactions up to next-to-next-to-leading order and minimally nonlocal interactions including Δ degrees of freedom. In this review, we discuss these recent developments and give an overview of the exciting results for nuclei, neutron matter and neutron stars, and electroweak reactions.
期刊介绍:
The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation.
One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.