强环的一个性质

Pub Date : 2022-11-02 DOI:10.1017/S0017089522000325
Greg Oman
{"title":"强环的一个性质","authors":"Greg Oman","doi":"10.1017/S0017089522000325","DOIUrl":null,"url":null,"abstract":"Abstract An associative ring R is called potent provided that for every \n$x\\in R$\n , there is an integer \n$n(x)>1$\n such that \n$x^{n(x)}=x$\n . A celebrated result of N. Jacobson is that every potent ring is commutative. In this note, we show that a ring R is potent if and only if every nonzero subring S of R contains a nonzero idempotent. We use this result to give a generalization of a recent result of Anderson and Danchev for reduced rings, which in turn generalizes Jacobson’s theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A characterization of potent rings\",\"authors\":\"Greg Oman\",\"doi\":\"10.1017/S0017089522000325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An associative ring R is called potent provided that for every \\n$x\\\\in R$\\n , there is an integer \\n$n(x)>1$\\n such that \\n$x^{n(x)}=x$\\n . A celebrated result of N. Jacobson is that every potent ring is commutative. In this note, we show that a ring R is potent if and only if every nonzero subring S of R contains a nonzero idempotent. We use this result to give a generalization of a recent result of Anderson and Danchev for reduced rings, which in turn generalizes Jacobson’s theorem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0017089522000325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089522000325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要一个结合环R称为强环,条件是R$中的每一个$x\,都有一个整数$n(x)>1$,使得$x^{n(x)}=x$。N.Jacobson的一个著名结果是,每个有效环都是可交换的。在这个注记中,我们证明了环R是有效的当且仅当R的每个非零子环S都包含一个非零幂等元。我们用这个结果给出了Anderson和Danchev最近关于约化环的一个结果的推广,这个结果又推广了Jacobson定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A characterization of potent rings
Abstract An associative ring R is called potent provided that for every $x\in R$ , there is an integer $n(x)>1$ such that $x^{n(x)}=x$ . A celebrated result of N. Jacobson is that every potent ring is commutative. In this note, we show that a ring R is potent if and only if every nonzero subring S of R contains a nonzero idempotent. We use this result to give a generalization of a recent result of Anderson and Danchev for reduced rings, which in turn generalizes Jacobson’s theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信