如何找到使用网站的类似公司?

IF 2.2 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE
Jan-Peter Bergmann, Miriam Amin, Yuri Campbell, Karl Trela
{"title":"如何找到使用网站的类似公司?","authors":"Jan-Peter Bergmann,&nbsp;Miriam Amin,&nbsp;Yuri Campbell,&nbsp;Karl Trela","doi":"10.1016/j.wpi.2023.102172","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The selection of industry partners for Research and Development (R&amp;D) is a challenging task for many organizations. Present methods for partner-selection, based on patents, publications or company databases, do often fail for highly specialized SMEs. Our approach aims at calculating the technological similarity for partner discovery. We apply methods from </span>Natural Language Processing (NLP) on companies’ website texts. We show that the deep-learning </span>language model<span> BERT<span> outperforms other methods at this task. Tested against expert-proven ground truth, it achieves an F1-score up to 0.90. Our results imply that website texts are useful for the purpose of estimating the similarity between companies. We see great potential in the scalability of the semantic analysis of company website texts.</span></span></p></div>","PeriodicalId":51794,"journal":{"name":"World Patent Information","volume":"73 ","pages":"Article 102172"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to find similar companies using websites?\",\"authors\":\"Jan-Peter Bergmann,&nbsp;Miriam Amin,&nbsp;Yuri Campbell,&nbsp;Karl Trela\",\"doi\":\"10.1016/j.wpi.2023.102172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The selection of industry partners for Research and Development (R&amp;D) is a challenging task for many organizations. Present methods for partner-selection, based on patents, publications or company databases, do often fail for highly specialized SMEs. Our approach aims at calculating the technological similarity for partner discovery. We apply methods from </span>Natural Language Processing (NLP) on companies’ website texts. We show that the deep-learning </span>language model<span> BERT<span> outperforms other methods at this task. Tested against expert-proven ground truth, it achieves an F1-score up to 0.90. Our results imply that website texts are useful for the purpose of estimating the similarity between companies. We see great potential in the scalability of the semantic analysis of company website texts.</span></span></p></div>\",\"PeriodicalId\":51794,\"journal\":{\"name\":\"World Patent Information\",\"volume\":\"73 \",\"pages\":\"Article 102172\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Patent Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0172219023000029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Patent Information","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0172219023000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

为研究和开发(R&D)选择行业合作伙伴对许多组织来说是一项具有挑战性的任务。目前基于专利、出版物或公司数据库的合作伙伴选择方法,往往不适用于高度专业化的中小企业。我们的方法旨在计算伙伴发现的技术相似度。我们将自然语言处理(NLP)的方法应用于公司网站文本。我们表明深度学习语言模型BERT在这个任务上优于其他方法。根据专家证明的真实情况进行测试,它达到了f1得分,最高可达0.90。我们的研究结果表明,网站文本对于估计公司之间的相似性是有用的。我们看到了公司网站文本语义分析的可扩展性的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to find similar companies using websites?

The selection of industry partners for Research and Development (R&D) is a challenging task for many organizations. Present methods for partner-selection, based on patents, publications or company databases, do often fail for highly specialized SMEs. Our approach aims at calculating the technological similarity for partner discovery. We apply methods from Natural Language Processing (NLP) on companies’ website texts. We show that the deep-learning language model BERT outperforms other methods at this task. Tested against expert-proven ground truth, it achieves an F1-score up to 0.90. Our results imply that website texts are useful for the purpose of estimating the similarity between companies. We see great potential in the scalability of the semantic analysis of company website texts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Patent Information
World Patent Information INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
3.50
自引率
18.50%
发文量
40
期刊介绍: The aim of World Patent Information is to provide a worldwide forum for the exchange of information between people working professionally in the field of Industrial Property information and documentation and to promote the widest possible use of the associated literature. Regular features include: papers concerned with all aspects of Industrial Property information and documentation; new regulations pertinent to Industrial Property information and documentation; short reports on relevant meetings and conferences; bibliographies, together with book and literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信