{"title":"不同雷诺数和马赫数下涡轮叶片尖部的气动热性能","authors":"Shaowen Chen, Cong Zeng, Zhi-yan Zhou, Weihang Li","doi":"10.1515/tjj-2022-0040","DOIUrl":null,"url":null,"abstract":"Abstract The changes of operating conditions can lead to variations in the aerodynamic conditions of the turbine blades. Then numerical studies are conducted to study the aerothermal performance of the turbine blade with a squealer tip at various Reynolds numbers (Re) and exit Mach numbers (Ma) with moving endwall. Besides, the effect of the rim height on the squealer tip is studied. The increasing of Reynolds numbers at Mach number = 0.78 enhances the heat-transfer at the tip of blade entirely, however, it has little impact on the leakage flow of the blade tip. The total heat flux increases with Mach number increasing from 0.78 to 0.96 and changes slightly with a further increasing of Mach number at a design Reynolds numbers. The height of squealer rim affects the tip leakage flow in the cavity and tip leakage vortex, and then affects the heat transfer distribution and the heat load of the blade tip.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The aerothermal performance of turbine blade squealer tip at various Reynolds numbers and Mach numbers with moving endwall\",\"authors\":\"Shaowen Chen, Cong Zeng, Zhi-yan Zhou, Weihang Li\",\"doi\":\"10.1515/tjj-2022-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The changes of operating conditions can lead to variations in the aerodynamic conditions of the turbine blades. Then numerical studies are conducted to study the aerothermal performance of the turbine blade with a squealer tip at various Reynolds numbers (Re) and exit Mach numbers (Ma) with moving endwall. Besides, the effect of the rim height on the squealer tip is studied. The increasing of Reynolds numbers at Mach number = 0.78 enhances the heat-transfer at the tip of blade entirely, however, it has little impact on the leakage flow of the blade tip. The total heat flux increases with Mach number increasing from 0.78 to 0.96 and changes slightly with a further increasing of Mach number at a design Reynolds numbers. The height of squealer rim affects the tip leakage flow in the cavity and tip leakage vortex, and then affects the heat transfer distribution and the heat load of the blade tip.\",\"PeriodicalId\":50284,\"journal\":{\"name\":\"International Journal of Turbo & Jet-Engines\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbo & Jet-Engines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tjj-2022-0040\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2022-0040","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
The aerothermal performance of turbine blade squealer tip at various Reynolds numbers and Mach numbers with moving endwall
Abstract The changes of operating conditions can lead to variations in the aerodynamic conditions of the turbine blades. Then numerical studies are conducted to study the aerothermal performance of the turbine blade with a squealer tip at various Reynolds numbers (Re) and exit Mach numbers (Ma) with moving endwall. Besides, the effect of the rim height on the squealer tip is studied. The increasing of Reynolds numbers at Mach number = 0.78 enhances the heat-transfer at the tip of blade entirely, however, it has little impact on the leakage flow of the blade tip. The total heat flux increases with Mach number increasing from 0.78 to 0.96 and changes slightly with a further increasing of Mach number at a design Reynolds numbers. The height of squealer rim affects the tip leakage flow in the cavity and tip leakage vortex, and then affects the heat transfer distribution and the heat load of the blade tip.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.