Vojislav Petrovic-Filipovic, R. Görgl, M. Suppan, J. Hesse, W. Waldhauser
{"title":"基于柔性压电传感器的激光定向能量沉积(L-DED)过程粉末流动监测概念","authors":"Vojislav Petrovic-Filipovic, R. Görgl, M. Suppan, J. Hesse, W. Waldhauser","doi":"10.12688/materialsopenres.17427.1","DOIUrl":null,"url":null,"abstract":"Background: The quality of powder-blown Laser-Directed Energy Deposition (L-DED) is mainly governed by the energy density per unit of mass employed to melt the material. In most of the previous works, the focus in process monitoring and control was on the control of energy input, by controlling the properties of the melt pool. However, the powder mass input is as important to monitor as the energy input, in order to preserve the equilibrium of the process. Methods: In this paper, the authors present the first test results of the Pyzoflex® sensor for powder flow monitoring in L-DED using real powder feeding system in the robot-based laser-processing cell. The sensor was tested against the powder projected from the powder feeder under typical flow regimes and the real-time measurements were taken using a specifically designed software tool. Results: The graphical representation of the registered sensor signals are clearly correlated with the powder flow values set at the powder feeder, which demonstrates that the piezoelectric sensors can detect the powder flow with elevated precision in real time. Conclusions: The first laboratory tests of flexible printed piezoelectric sensors demonstrate that they are fast and precise in the powder flow measurement, but that more effort must be invested in the robustness of the measurement setup as well as in clearing and stabilization of the registered signal.","PeriodicalId":29806,"journal":{"name":"Materials Open Research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring concept for powder flow monitoring in Laser-Directed Energy Deposition (L-DED) process based on flexible piezoelectric sensors\",\"authors\":\"Vojislav Petrovic-Filipovic, R. Görgl, M. Suppan, J. Hesse, W. Waldhauser\",\"doi\":\"10.12688/materialsopenres.17427.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The quality of powder-blown Laser-Directed Energy Deposition (L-DED) is mainly governed by the energy density per unit of mass employed to melt the material. In most of the previous works, the focus in process monitoring and control was on the control of energy input, by controlling the properties of the melt pool. However, the powder mass input is as important to monitor as the energy input, in order to preserve the equilibrium of the process. Methods: In this paper, the authors present the first test results of the Pyzoflex® sensor for powder flow monitoring in L-DED using real powder feeding system in the robot-based laser-processing cell. The sensor was tested against the powder projected from the powder feeder under typical flow regimes and the real-time measurements were taken using a specifically designed software tool. Results: The graphical representation of the registered sensor signals are clearly correlated with the powder flow values set at the powder feeder, which demonstrates that the piezoelectric sensors can detect the powder flow with elevated precision in real time. Conclusions: The first laboratory tests of flexible printed piezoelectric sensors demonstrate that they are fast and precise in the powder flow measurement, but that more effort must be invested in the robustness of the measurement setup as well as in clearing and stabilization of the registered signal.\",\"PeriodicalId\":29806,\"journal\":{\"name\":\"Materials Open Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Open Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/materialsopenres.17427.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Open Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/materialsopenres.17427.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monitoring concept for powder flow monitoring in Laser-Directed Energy Deposition (L-DED) process based on flexible piezoelectric sensors
Background: The quality of powder-blown Laser-Directed Energy Deposition (L-DED) is mainly governed by the energy density per unit of mass employed to melt the material. In most of the previous works, the focus in process monitoring and control was on the control of energy input, by controlling the properties of the melt pool. However, the powder mass input is as important to monitor as the energy input, in order to preserve the equilibrium of the process. Methods: In this paper, the authors present the first test results of the Pyzoflex® sensor for powder flow monitoring in L-DED using real powder feeding system in the robot-based laser-processing cell. The sensor was tested against the powder projected from the powder feeder under typical flow regimes and the real-time measurements were taken using a specifically designed software tool. Results: The graphical representation of the registered sensor signals are clearly correlated with the powder flow values set at the powder feeder, which demonstrates that the piezoelectric sensors can detect the powder flow with elevated precision in real time. Conclusions: The first laboratory tests of flexible printed piezoelectric sensors demonstrate that they are fast and precise in the powder flow measurement, but that more effort must be invested in the robustness of the measurement setup as well as in clearing and stabilization of the registered signal.
期刊介绍:
Materials Open Research is a rapid open access publishing platform for a broad range of materials science research. The platform welcomes theoretical, experimental, and modelling approaches on the properties, characterization, design, structure, classification, processing, and performance of materials, and their applications. The platform is open to submissions from researchers, practitioners and experts, and all articles will benefit from open peer review.
Materials research underpins many significant and novel technologies which are set to revolutionize our society, and Materials Open Research is well-suited to ensure fast and full access to this research for the benefit of the academic community, industry, and beyond.
The platform aims to create a forum for discussion and for the dissemination of research in all areas of materials science and engineering. This includes, but is not limited to, research on the following material classes:
● Biomaterials and biomedical materials
● Composites
● Economic minerals
● Electronic materials
● Glasses & ceramics
● Magnetic materials
● Metals & alloys
● Nanomaterials and nanostructures
● Polymers
● Porous materials
● Quantum materials
● Smart materials
● Soft matter
● Structural materials
● Superconducting materials
● Thin films
Materials Open Research also focuses on a range of applications and approaches within materials science, including but not limited to:
● Additive manufacturing
● Computational materials & modelling
● Materials in energy & the environment
● Materials informatics
● Materials synthesis and processing
In addition to original Research Articles, Materials Open Research will feature a variety of article types including Method Articles, Study Protocols, Software Tool Articles, Systematic Reviews, Data Notes, Brief Reports, and Opinion Articles. All research is welcome and will be published irrespective of the perceived level of interest or novelty; we accept confirmatory and replication studies, as well as negative and null results.
Materials Open Research is an Open Research Platform. All articles are published open access under a CC-BY license and authors benefit from fully transparent publishing and peer review processes. Where applicable, authors are asked to include detailed descriptions of methods and will receive editorial guidance on making all underlying data openly available in order to improve reproducibility. The platform will also provide the option to publish non-peer reviewed materials including technical reports, training materials, posters, slides, and other documents.