基于柔性压电传感器的激光定向能量沉积(L-DED)过程粉末流动监测概念

Vojislav Petrovic-Filipovic, R. Görgl, M. Suppan, J. Hesse, W. Waldhauser
{"title":"基于柔性压电传感器的激光定向能量沉积(L-DED)过程粉末流动监测概念","authors":"Vojislav Petrovic-Filipovic, R. Görgl, M. Suppan, J. Hesse, W. Waldhauser","doi":"10.12688/materialsopenres.17427.1","DOIUrl":null,"url":null,"abstract":"Background: The quality of powder-blown Laser-Directed Energy Deposition (L-DED) is mainly governed by the energy density per unit of mass employed to melt the material. In most of the previous works, the focus in process monitoring and control was on the control of energy input, by controlling the properties of the melt pool. However, the powder mass input is as important to monitor as the energy input, in order to preserve the equilibrium of the process. Methods: In this paper, the authors present the first test results of the Pyzoflex® sensor for powder flow monitoring in L-DED using real powder feeding system in the robot-based laser-processing cell. The sensor was tested against the powder projected from the powder feeder under typical flow regimes and the real-time measurements were taken using a specifically designed software tool. Results: The graphical representation of the registered sensor signals are clearly correlated with the powder flow values set at the powder feeder, which demonstrates that the piezoelectric sensors can detect the powder flow with elevated precision in real time. Conclusions: The first laboratory tests of flexible printed piezoelectric sensors demonstrate that they are fast and precise in the powder flow measurement, but that more effort must be invested in the robustness of the measurement setup as well as in clearing and stabilization of the registered signal.","PeriodicalId":29806,"journal":{"name":"Materials Open Research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring concept for powder flow monitoring in Laser-Directed Energy Deposition (L-DED) process based on flexible piezoelectric sensors\",\"authors\":\"Vojislav Petrovic-Filipovic, R. Görgl, M. Suppan, J. Hesse, W. Waldhauser\",\"doi\":\"10.12688/materialsopenres.17427.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The quality of powder-blown Laser-Directed Energy Deposition (L-DED) is mainly governed by the energy density per unit of mass employed to melt the material. In most of the previous works, the focus in process monitoring and control was on the control of energy input, by controlling the properties of the melt pool. However, the powder mass input is as important to monitor as the energy input, in order to preserve the equilibrium of the process. Methods: In this paper, the authors present the first test results of the Pyzoflex® sensor for powder flow monitoring in L-DED using real powder feeding system in the robot-based laser-processing cell. The sensor was tested against the powder projected from the powder feeder under typical flow regimes and the real-time measurements were taken using a specifically designed software tool. Results: The graphical representation of the registered sensor signals are clearly correlated with the powder flow values set at the powder feeder, which demonstrates that the piezoelectric sensors can detect the powder flow with elevated precision in real time. Conclusions: The first laboratory tests of flexible printed piezoelectric sensors demonstrate that they are fast and precise in the powder flow measurement, but that more effort must be invested in the robustness of the measurement setup as well as in clearing and stabilization of the registered signal.\",\"PeriodicalId\":29806,\"journal\":{\"name\":\"Materials Open Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Open Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/materialsopenres.17427.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Open Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/materialsopenres.17427.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:粉末吹制激光定向能量沉积(L-DED)的质量主要取决于熔化材料所用的每单位质量的能量密度。在以前的大多数工作中,过程监测和控制的重点是通过控制熔池的特性来控制能量输入。然而,为了保持过程的平衡,粉末质量输入与能量输入一样重要。方法:在本文中,作者介绍了Pyzoflex®传感器在基于机器人的激光加工室中使用真实的粉末进给系统在L-DED中监测粉末流量的首次测试结果。在典型的流动状态下,针对从粉末进料器投射的粉末对传感器进行了测试,并使用专门设计的软件工具进行了实时测量。结果:记录的传感器信号的图形表示与在给粉机上设置的粉末流量值明显相关,这表明压电传感器可以实时检测粉末流量,精度更高。结论:柔性印刷压电传感器的首次实验室测试表明,它们在粉末流量测量中快速而精确,但必须在测量设置的稳健性以及记录信号的清除和稳定方面投入更多的精力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring concept for powder flow monitoring in Laser-Directed Energy Deposition (L-DED) process based on flexible piezoelectric sensors
Background: The quality of powder-blown Laser-Directed Energy Deposition (L-DED) is mainly governed by the energy density per unit of mass employed to melt the material. In most of the previous works, the focus in process monitoring and control was on the control of energy input, by controlling the properties of the melt pool. However, the powder mass input is as important to monitor as the energy input, in order to preserve the equilibrium of the process. Methods: In this paper, the authors present the first test results of the Pyzoflex® sensor for powder flow monitoring in L-DED using real powder feeding system in the robot-based laser-processing cell. The sensor was tested against the powder projected from the powder feeder under typical flow regimes and the real-time measurements were taken using a specifically designed software tool. Results: The graphical representation of the registered sensor signals are clearly correlated with the powder flow values set at the powder feeder, which demonstrates that the piezoelectric sensors can detect the powder flow with elevated precision in real time. Conclusions: The first laboratory tests of flexible printed piezoelectric sensors demonstrate that they are fast and precise in the powder flow measurement, but that more effort must be invested in the robustness of the measurement setup as well as in clearing and stabilization of the registered signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Open Research
Materials Open Research materials science-
自引率
0.00%
发文量
0
期刊介绍: Materials Open Research is a rapid open access publishing platform for a broad range of materials science research. The platform welcomes theoretical, experimental, and modelling approaches on the properties, characterization, design, structure, classification, processing, and performance of materials, and their applications. The platform is open to submissions from researchers, practitioners and experts, and all articles will benefit from open peer review.  Materials research underpins many significant and novel technologies which are set to revolutionize our society, and Materials Open Research is well-suited to ensure fast and full access to this research for the benefit of the academic community, industry, and beyond. The platform aims to create a forum for discussion and for the dissemination of research in all areas of materials science and engineering. This includes, but is not limited to, research on the following material classes: ● Biomaterials and biomedical materials ● Composites ● Economic minerals ● Electronic materials ● Glasses & ceramics ● Magnetic materials ● Metals & alloys ● Nanomaterials and nanostructures ● Polymers ● Porous materials ● Quantum materials ● Smart materials ● Soft matter ● Structural materials ● Superconducting materials ● Thin films Materials Open Research also focuses on a range of applications and approaches within materials science, including but not limited to: ● Additive manufacturing ● Computational materials & modelling ● Materials in energy & the environment ● Materials informatics ● Materials synthesis and processing In addition to original Research Articles, Materials Open Research will feature a variety of article types including Method Articles, Study Protocols, Software Tool Articles, Systematic Reviews, Data Notes, Brief Reports, and Opinion Articles. All research is welcome and will be published irrespective of the perceived level of interest or novelty; we accept confirmatory and replication studies, as well as negative and null results.  Materials Open Research is an Open Research Platform. All articles are published open access under a CC-BY license and authors benefit from fully transparent publishing and peer review processes. Where applicable, authors are asked to include detailed descriptions of methods and will receive editorial guidance on making all underlying data openly available in order to improve reproducibility. The platform will also provide the option to publish non-peer reviewed materials including technical reports, training materials, posters, slides, and other documents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信