Chunyang Dong, Zirui Gao, Yinlong Li, Mi Peng, Meng Wang, Yao Xu, Chengyu Li, Ming Xu, Yuchen Deng, Xuetao Qin, Fei Huang, Xuyan Wei, Yang-Gang Wang, Hongyang Liu, Wu Zhou, Ding Ma
{"title":"完全暴露的钯簇催化剂能够从氮杂环中生产氢气","authors":"Chunyang Dong, Zirui Gao, Yinlong Li, Mi Peng, Meng Wang, Yao Xu, Chengyu Li, Ming Xu, Yuchen Deng, Xuetao Qin, Fei Huang, Xuyan Wei, Yang-Gang Wang, Hongyang Liu, Wu Zhou, Ding Ma","doi":"10.1038/s41929-022-00769-4","DOIUrl":null,"url":null,"abstract":"The size of supported metal species is known to have a profound influence on their catalytic activity. However, this structure sensitivity remains ambiguous for metals at the atomic scale due to the lack of single-atom sensitive and statistically significant quantification methods. Here we overcome this difficulty to quantify the catalytic contribution of various surface palladium species, ranging from single atoms to sub-nanometre clusters and nanoparticles, in the dehydrogenation of dodecahydro-N-ethylcarbazole, a reaction of importance for H2 transportation and utilization. We show that the optimal site is a fully exposed palladium cluster with an average Pd–Pd coordination number of ∼4.4, favouring both the activation of reactants and desorption of products, whereas palladium single atoms are almost inactive. Our study highlights that for certain catalytic reactions, the construction of fully exposed metal clusters without the presence of spectators (that is, palladium single atoms in this work) could help to maximize the reactivity and the atomic efficiency of noble metals. Structure sensitivity is an important property in catalysis, although its determination at the atomic cluster scale remains difficult. Here, the authors explore the reactivity of different palladium clusters with low nuclearity identifying the ideal Pd–Pd coordination number for the dehydrogenation of dodecahydro-N-ethylcarbazole.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"5 6","pages":"485-493"},"PeriodicalIF":42.8000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles\",\"authors\":\"Chunyang Dong, Zirui Gao, Yinlong Li, Mi Peng, Meng Wang, Yao Xu, Chengyu Li, Ming Xu, Yuchen Deng, Xuetao Qin, Fei Huang, Xuyan Wei, Yang-Gang Wang, Hongyang Liu, Wu Zhou, Ding Ma\",\"doi\":\"10.1038/s41929-022-00769-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The size of supported metal species is known to have a profound influence on their catalytic activity. However, this structure sensitivity remains ambiguous for metals at the atomic scale due to the lack of single-atom sensitive and statistically significant quantification methods. Here we overcome this difficulty to quantify the catalytic contribution of various surface palladium species, ranging from single atoms to sub-nanometre clusters and nanoparticles, in the dehydrogenation of dodecahydro-N-ethylcarbazole, a reaction of importance for H2 transportation and utilization. We show that the optimal site is a fully exposed palladium cluster with an average Pd–Pd coordination number of ∼4.4, favouring both the activation of reactants and desorption of products, whereas palladium single atoms are almost inactive. Our study highlights that for certain catalytic reactions, the construction of fully exposed metal clusters without the presence of spectators (that is, palladium single atoms in this work) could help to maximize the reactivity and the atomic efficiency of noble metals. Structure sensitivity is an important property in catalysis, although its determination at the atomic cluster scale remains difficult. Here, the authors explore the reactivity of different palladium clusters with low nuclearity identifying the ideal Pd–Pd coordination number for the dehydrogenation of dodecahydro-N-ethylcarbazole.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"5 6\",\"pages\":\"485-493\"},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2022-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-022-00769-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-022-00769-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles
The size of supported metal species is known to have a profound influence on their catalytic activity. However, this structure sensitivity remains ambiguous for metals at the atomic scale due to the lack of single-atom sensitive and statistically significant quantification methods. Here we overcome this difficulty to quantify the catalytic contribution of various surface palladium species, ranging from single atoms to sub-nanometre clusters and nanoparticles, in the dehydrogenation of dodecahydro-N-ethylcarbazole, a reaction of importance for H2 transportation and utilization. We show that the optimal site is a fully exposed palladium cluster with an average Pd–Pd coordination number of ∼4.4, favouring both the activation of reactants and desorption of products, whereas palladium single atoms are almost inactive. Our study highlights that for certain catalytic reactions, the construction of fully exposed metal clusters without the presence of spectators (that is, palladium single atoms in this work) could help to maximize the reactivity and the atomic efficiency of noble metals. Structure sensitivity is an important property in catalysis, although its determination at the atomic cluster scale remains difficult. Here, the authors explore the reactivity of different palladium clusters with low nuclearity identifying the ideal Pd–Pd coordination number for the dehydrogenation of dodecahydro-N-ethylcarbazole.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.