Leyao Wu, Gavan W. Lienhart, S. Basak, S. Jana, Kevin A. Cavicchi, J. Eagan
{"title":"化学和机械后处理回收PET纤维的结晶性","authors":"Leyao Wu, Gavan W. Lienhart, S. Basak, S. Jana, Kevin A. Cavicchi, J. Eagan","doi":"10.2346/tire.23.22020","DOIUrl":null,"url":null,"abstract":"\n This work investigated the effect of isophthalate (iso) content in poly(ethylene terephthalate) (PET) materials on its degree of crystallinity (χ%) and mechanical properties. Melt blends were prepared from virgin (0 iso-wt.%) and bottle-grade (1.7 iso-wt.%) PET and subsequently spun into fibers. The mechanical and crystallinity properties were determined using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and uniaxial tensile testing. The crystallinity results determined from DSC and XRD quantified the relationship between iso-content and χ% in the materials. It was found that melt-mixing of different isophthalate grades had a lesser effect on melting temperature (Tm) and χ% than chemically recycled random copolymers of terephthalate and isophthalate. It was further shown that random copolymers of <0.25 iso-wt.% had comparable crystallinity to the virgin high-modulus low-shrink (HMLS) materials.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystallinity of Recycled PET Fibers from Chemical and Mechanical Reprocessing\",\"authors\":\"Leyao Wu, Gavan W. Lienhart, S. Basak, S. Jana, Kevin A. Cavicchi, J. Eagan\",\"doi\":\"10.2346/tire.23.22020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work investigated the effect of isophthalate (iso) content in poly(ethylene terephthalate) (PET) materials on its degree of crystallinity (χ%) and mechanical properties. Melt blends were prepared from virgin (0 iso-wt.%) and bottle-grade (1.7 iso-wt.%) PET and subsequently spun into fibers. The mechanical and crystallinity properties were determined using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and uniaxial tensile testing. The crystallinity results determined from DSC and XRD quantified the relationship between iso-content and χ% in the materials. It was found that melt-mixing of different isophthalate grades had a lesser effect on melting temperature (Tm) and χ% than chemically recycled random copolymers of terephthalate and isophthalate. It was further shown that random copolymers of <0.25 iso-wt.% had comparable crystallinity to the virgin high-modulus low-shrink (HMLS) materials.\",\"PeriodicalId\":44601,\"journal\":{\"name\":\"Tire Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tire Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2346/tire.23.22020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/tire.23.22020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Crystallinity of Recycled PET Fibers from Chemical and Mechanical Reprocessing
This work investigated the effect of isophthalate (iso) content in poly(ethylene terephthalate) (PET) materials on its degree of crystallinity (χ%) and mechanical properties. Melt blends were prepared from virgin (0 iso-wt.%) and bottle-grade (1.7 iso-wt.%) PET and subsequently spun into fibers. The mechanical and crystallinity properties were determined using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and uniaxial tensile testing. The crystallinity results determined from DSC and XRD quantified the relationship between iso-content and χ% in the materials. It was found that melt-mixing of different isophthalate grades had a lesser effect on melting temperature (Tm) and χ% than chemically recycled random copolymers of terephthalate and isophthalate. It was further shown that random copolymers of <0.25 iso-wt.% had comparable crystallinity to the virgin high-modulus low-shrink (HMLS) materials.
期刊介绍:
Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.