{"title":"爪哇-印尼吸烟者CYP2A6*4等位基因与低密度脂蛋白胆固醇(LDL-C)相关的高频率基因","authors":"P. A. Prasojo, Christine Patramurti","doi":"10.12928/pharmaciana.v11i2.20744","DOIUrl":null,"url":null,"abstract":"The CYP2A6 gene, which codes the CYP2A6 enzyme, has known to have ahigh polymorphism. This polymorphism could decrease, increase, or eliminate the CYP2A6 enzyme activity. CYP2A6*4 , an inactive allele, decreased the CYP2A6 enzyme activity. One of the CYP2A6 enzyme-specific substrates is nicotine. This inactive allele could decrease nicotine metabolism that causes high nicotine levels in the blood. In addition, it caused the increasing levels of Low-Density Lipoprotein Cholesterol (LDL-C) by expanding the lipolysis process. The purpose of this research was to evaluate the effect of the CYP2A6*4 allele gene on LDL-C levels. Respondents in this study were 31 male Javanese smokers. This research is an analytic observational study with a cross-sectional design. Polymerase chain reaction (PCR) methods use to identification the CYP2A6*4 allele gene. This study shows that a high-frequency CYP2A6*4 alleles gene among the subject was detected, with an allele frequency is 93.55%. Furthermore, this CYP2A6*4 allele gene did not impact LDL-C levels, with the Odd Ratio value was 1.636 (P-Value = 0.737). In conclusion, the CYP2A6*4 allele gene does not significantly affect the LDL-C levels in Javanese Indonesian smokers.","PeriodicalId":20051,"journal":{"name":"Pharmaciana","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CYP2A6*4 allele gene high frequency associated with low-density lipoprotein cholesterol (LDL-C) among Javanese Indonesian smokers\",\"authors\":\"P. A. Prasojo, Christine Patramurti\",\"doi\":\"10.12928/pharmaciana.v11i2.20744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CYP2A6 gene, which codes the CYP2A6 enzyme, has known to have ahigh polymorphism. This polymorphism could decrease, increase, or eliminate the CYP2A6 enzyme activity. CYP2A6*4 , an inactive allele, decreased the CYP2A6 enzyme activity. One of the CYP2A6 enzyme-specific substrates is nicotine. This inactive allele could decrease nicotine metabolism that causes high nicotine levels in the blood. In addition, it caused the increasing levels of Low-Density Lipoprotein Cholesterol (LDL-C) by expanding the lipolysis process. The purpose of this research was to evaluate the effect of the CYP2A6*4 allele gene on LDL-C levels. Respondents in this study were 31 male Javanese smokers. This research is an analytic observational study with a cross-sectional design. Polymerase chain reaction (PCR) methods use to identification the CYP2A6*4 allele gene. This study shows that a high-frequency CYP2A6*4 alleles gene among the subject was detected, with an allele frequency is 93.55%. Furthermore, this CYP2A6*4 allele gene did not impact LDL-C levels, with the Odd Ratio value was 1.636 (P-Value = 0.737). In conclusion, the CYP2A6*4 allele gene does not significantly affect the LDL-C levels in Javanese Indonesian smokers.\",\"PeriodicalId\":20051,\"journal\":{\"name\":\"Pharmaciana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaciana\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12928/pharmaciana.v11i2.20744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaciana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12928/pharmaciana.v11i2.20744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CYP2A6*4 allele gene high frequency associated with low-density lipoprotein cholesterol (LDL-C) among Javanese Indonesian smokers
The CYP2A6 gene, which codes the CYP2A6 enzyme, has known to have ahigh polymorphism. This polymorphism could decrease, increase, or eliminate the CYP2A6 enzyme activity. CYP2A6*4 , an inactive allele, decreased the CYP2A6 enzyme activity. One of the CYP2A6 enzyme-specific substrates is nicotine. This inactive allele could decrease nicotine metabolism that causes high nicotine levels in the blood. In addition, it caused the increasing levels of Low-Density Lipoprotein Cholesterol (LDL-C) by expanding the lipolysis process. The purpose of this research was to evaluate the effect of the CYP2A6*4 allele gene on LDL-C levels. Respondents in this study were 31 male Javanese smokers. This research is an analytic observational study with a cross-sectional design. Polymerase chain reaction (PCR) methods use to identification the CYP2A6*4 allele gene. This study shows that a high-frequency CYP2A6*4 alleles gene among the subject was detected, with an allele frequency is 93.55%. Furthermore, this CYP2A6*4 allele gene did not impact LDL-C levels, with the Odd Ratio value was 1.636 (P-Value = 0.737). In conclusion, the CYP2A6*4 allele gene does not significantly affect the LDL-C levels in Javanese Indonesian smokers.