T. Paap, A. Santini, C. Rodas, G. Granados, F. Pecori, M. Wingfield
{"title":"受疫情威胁的欧洲桃金娘和南非桃金娘锈病病原体Austropccinia psidii(鞘膜菌科,Pucciales)菌株","authors":"T. Paap, A. Santini, C. Rodas, G. Granados, F. Pecori, M. Wingfield","doi":"10.3897/neobiota.84.95823","DOIUrl":null,"url":null,"abstract":"Austropuccinia psidii, the causal agent of myrtle rust, has emerged as a significant threat to Myrtaceae in planted and natural woody ecosystems. The first detection of A. puccinia in South Africa was from severely infected ornamental Myrtus communis. This raised concern that M. communis, the sole Myrtaceae species native to Europe and an important component of vegetation in Mediterranean regions, could be threatened by the rust. In light of the potential threat to this unique species, seed was collected from 12 Italian provenances of M. communis, including mainland and island (Sardinia and Sicily) populations. We assessed the susceptibility of these provenances to both the pandemic and South African strains of A. psidii. In Colombia, where the pandemic strain of A. psidii is native, seedlings rapidly became infected by natural inoculum. In South Africa, a preliminary screening of seedlings by artificial inoculation with a single-uredinium isolate produced high levels of disease. Finally, plants of each of the 12 provenances were planted and monitored in Florence, Italy. To date, these showed no signs of disease, but will continue to be monitored. This study highlights the significant threat that both the pandemic and South African strains of A. puccinia pose to M. communis in Europe.","PeriodicalId":54290,"journal":{"name":"Neobiota","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Myrtus communis in Europe threatened by the pandemic and South African strains of the myrtle rust pathogen Austropuccinia psidii (Sphaerophragmiaceae, Pucciniales)\",\"authors\":\"T. Paap, A. Santini, C. Rodas, G. Granados, F. Pecori, M. Wingfield\",\"doi\":\"10.3897/neobiota.84.95823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Austropuccinia psidii, the causal agent of myrtle rust, has emerged as a significant threat to Myrtaceae in planted and natural woody ecosystems. The first detection of A. puccinia in South Africa was from severely infected ornamental Myrtus communis. This raised concern that M. communis, the sole Myrtaceae species native to Europe and an important component of vegetation in Mediterranean regions, could be threatened by the rust. In light of the potential threat to this unique species, seed was collected from 12 Italian provenances of M. communis, including mainland and island (Sardinia and Sicily) populations. We assessed the susceptibility of these provenances to both the pandemic and South African strains of A. psidii. In Colombia, where the pandemic strain of A. psidii is native, seedlings rapidly became infected by natural inoculum. In South Africa, a preliminary screening of seedlings by artificial inoculation with a single-uredinium isolate produced high levels of disease. Finally, plants of each of the 12 provenances were planted and monitored in Florence, Italy. To date, these showed no signs of disease, but will continue to be monitored. This study highlights the significant threat that both the pandemic and South African strains of A. puccinia pose to M. communis in Europe.\",\"PeriodicalId\":54290,\"journal\":{\"name\":\"Neobiota\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neobiota\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3897/neobiota.84.95823\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neobiota","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3897/neobiota.84.95823","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Myrtus communis in Europe threatened by the pandemic and South African strains of the myrtle rust pathogen Austropuccinia psidii (Sphaerophragmiaceae, Pucciniales)
Austropuccinia psidii, the causal agent of myrtle rust, has emerged as a significant threat to Myrtaceae in planted and natural woody ecosystems. The first detection of A. puccinia in South Africa was from severely infected ornamental Myrtus communis. This raised concern that M. communis, the sole Myrtaceae species native to Europe and an important component of vegetation in Mediterranean regions, could be threatened by the rust. In light of the potential threat to this unique species, seed was collected from 12 Italian provenances of M. communis, including mainland and island (Sardinia and Sicily) populations. We assessed the susceptibility of these provenances to both the pandemic and South African strains of A. psidii. In Colombia, where the pandemic strain of A. psidii is native, seedlings rapidly became infected by natural inoculum. In South Africa, a preliminary screening of seedlings by artificial inoculation with a single-uredinium isolate produced high levels of disease. Finally, plants of each of the 12 provenances were planted and monitored in Florence, Italy. To date, these showed no signs of disease, but will continue to be monitored. This study highlights the significant threat that both the pandemic and South African strains of A. puccinia pose to M. communis in Europe.
NeobiotaAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.10
自引率
7.80%
发文量
0
审稿时长
6 weeks
期刊介绍:
NeoBiota is a peer-reviewed, open-access, rapid online journal launched to accelerate research on alien species and biological invasions: aquatic and terrestrial, animals, plants, fungi and micro-organisms.
The journal NeoBiota is a continuation of the former NEOBIOTA publication series; for volumes 1-8 see http://www.oekosys.tu-berlin.de/menue/neobiota
All articles are published immediately upon editorial approval. All published papers can be freely copied, downloaded, printed and distributed at no charge for the reader. Authors are thus encouraged to post the pdf files of published papers on their homepages or elsewhere to expedite distribution. There is no charge for color.