{"title":"随机曲面上分离闭测地线长度的大亏格渐近性","authors":"Xin Nie, Yunhui Wu, Yuhao Xue","doi":"10.1112/topo.12276","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate basic geometric quantities of a random hyperbolic surface of genus <math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> with respect to the Weil–Petersson measure on the moduli space <math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mi>g</mi>\n </msub>\n <annotation>$\\mathcal {M}_g$</annotation>\n </semantics></math>. We show that as <math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> goes to infinity, a generic surface <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>∈</mo>\n <msub>\n <mi>M</mi>\n <mi>g</mi>\n </msub>\n </mrow>\n <annotation>$X\\in \\mathcal {M}_g$</annotation>\n </semantics></math> satisfies asymptotically: \n\n </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Large genus asymptotics for lengths of separating closed geodesics on random surfaces\",\"authors\":\"Xin Nie, Yunhui Wu, Yuhao Xue\",\"doi\":\"10.1112/topo.12276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate basic geometric quantities of a random hyperbolic surface of genus <math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> with respect to the Weil–Petersson measure on the moduli space <math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mi>g</mi>\\n </msub>\\n <annotation>$\\\\mathcal {M}_g$</annotation>\\n </semantics></math>. We show that as <math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> goes to infinity, a generic surface <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>∈</mo>\\n <msub>\\n <mi>M</mi>\\n <mi>g</mi>\\n </msub>\\n </mrow>\\n <annotation>$X\\\\in \\\\mathcal {M}_g$</annotation>\\n </semantics></math> satisfies asymptotically: \\n\\n </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large genus asymptotics for lengths of separating closed geodesics on random surfaces
In this paper, we investigate basic geometric quantities of a random hyperbolic surface of genus with respect to the Weil–Petersson measure on the moduli space . We show that as goes to infinity, a generic surface satisfies asymptotically: