{"title":"基于小波-希尔伯特变换的双向最小二乘灰色变换和改进的二元灰狼优化用于癫痫脑电图识别","authors":"Chang Liu , Wanzhong Chen , Tao Zhang","doi":"10.1016/j.bbe.2023.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>Wavelet based seizure detection is an importance topic for epilepsy diagnosis via electroencephalogram (EEG), but its performance is closely related to the choice of wavelet bases. To overcome this issue, a fusion method of wavelet packet transformation (WPT), Hilbert transform based bidirectional least squares grey transform (HTBiLSGT), modified binary grey wolf optimization (MBGWO) and fuzzy K-Nearest Neighbor (FKNN) was proposed. The HTBiLSGT was first proposed to model the envelope change of a signal, then WPT based HTBiLSGT was developed for EEG feature extraction by performing HTBiLSGT for each subband of each wavelet level. To select discriminative features, MBGWO was further put forward and employed to conduct feature selection, and the selected features were finally fed into FKNN for classification. The Bonn and CHB-MIT EEG datasets were used to verify the effectiveness of the proposed technique. Experimental results indicate the proposed WPT based HTBiLSGT, MBGWO and FKNN can respectively lead to the highest accuracies of 100% and 98.60 ± 1.35% for the ternary and quinary classification cases of Bonn dataset, it also results in the overall accuracy of 99.48 ± 0.61 for the CHB-MIT dataset, and the proposal is proven to be insensitive to the choice of wavelet bases.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wavelet-Hilbert transform based bidirectional least squares grey transform and modified binary grey wolf optimization for the identification of epileptic EEGs\",\"authors\":\"Chang Liu , Wanzhong Chen , Tao Zhang\",\"doi\":\"10.1016/j.bbe.2023.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wavelet based seizure detection is an importance topic for epilepsy diagnosis via electroencephalogram (EEG), but its performance is closely related to the choice of wavelet bases. To overcome this issue, a fusion method of wavelet packet transformation (WPT), Hilbert transform based bidirectional least squares grey transform (HTBiLSGT), modified binary grey wolf optimization (MBGWO) and fuzzy K-Nearest Neighbor (FKNN) was proposed. The HTBiLSGT was first proposed to model the envelope change of a signal, then WPT based HTBiLSGT was developed for EEG feature extraction by performing HTBiLSGT for each subband of each wavelet level. To select discriminative features, MBGWO was further put forward and employed to conduct feature selection, and the selected features were finally fed into FKNN for classification. The Bonn and CHB-MIT EEG datasets were used to verify the effectiveness of the proposed technique. Experimental results indicate the proposed WPT based HTBiLSGT, MBGWO and FKNN can respectively lead to the highest accuracies of 100% and 98.60 ± 1.35% for the ternary and quinary classification cases of Bonn dataset, it also results in the overall accuracy of 99.48 ± 0.61 for the CHB-MIT dataset, and the proposal is proven to be insensitive to the choice of wavelet bases.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521623000232\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521623000232","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Wavelet-Hilbert transform based bidirectional least squares grey transform and modified binary grey wolf optimization for the identification of epileptic EEGs
Wavelet based seizure detection is an importance topic for epilepsy diagnosis via electroencephalogram (EEG), but its performance is closely related to the choice of wavelet bases. To overcome this issue, a fusion method of wavelet packet transformation (WPT), Hilbert transform based bidirectional least squares grey transform (HTBiLSGT), modified binary grey wolf optimization (MBGWO) and fuzzy K-Nearest Neighbor (FKNN) was proposed. The HTBiLSGT was first proposed to model the envelope change of a signal, then WPT based HTBiLSGT was developed for EEG feature extraction by performing HTBiLSGT for each subband of each wavelet level. To select discriminative features, MBGWO was further put forward and employed to conduct feature selection, and the selected features were finally fed into FKNN for classification. The Bonn and CHB-MIT EEG datasets were used to verify the effectiveness of the proposed technique. Experimental results indicate the proposed WPT based HTBiLSGT, MBGWO and FKNN can respectively lead to the highest accuracies of 100% and 98.60 ± 1.35% for the ternary and quinary classification cases of Bonn dataset, it also results in the overall accuracy of 99.48 ± 0.61 for the CHB-MIT dataset, and the proposal is proven to be insensitive to the choice of wavelet bases.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.