{"title":"MPI-GWAS:一种用于全基因组关联研究的超计算辅助排列方法","authors":"H. Paik, Yongseong Cho, S. Cho, Oh-Kyoung Kwon","doi":"10.5808/gi.22001","DOIUrl":null,"url":null,"abstract":"Permutation testing is a robust and popular approach for significance testing in genomic research that has the advantage of reducing inflated type 1 error rates; however, its computational cost is notorious in genome-wide association studies (GWAS). Here, we developed a supercomputing-aided approach to accelerate the permutation testing for GWAS, based on the message-passing interface (MPI) on parallel computing architecture. Our application, called MPI-GWAS, conducts MPI-based permutation testing using a parallel computing approach with our supercomputing system, Nurion (8,305 compute nodes, and 563,740 central processing units [CPUs]). For 107 permutations of one locus in MPI-GWAS, it was calculated in 600 s using 2,720 CPU cores. For 107 permutations of ~30,000–50,000 loci in over 7,000 subjects, the total elapsed time was ~4 days in the Nurion supercomputer. Thus, MPI-GWAS enables us to feasibly compute the permutation-based GWAS within a reason-able time by harnessing the power of parallel computing resources.","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MPI-GWAS: a supercomputing-aided permutation approach for genome-wide association studies\",\"authors\":\"H. Paik, Yongseong Cho, S. Cho, Oh-Kyoung Kwon\",\"doi\":\"10.5808/gi.22001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Permutation testing is a robust and popular approach for significance testing in genomic research that has the advantage of reducing inflated type 1 error rates; however, its computational cost is notorious in genome-wide association studies (GWAS). Here, we developed a supercomputing-aided approach to accelerate the permutation testing for GWAS, based on the message-passing interface (MPI) on parallel computing architecture. Our application, called MPI-GWAS, conducts MPI-based permutation testing using a parallel computing approach with our supercomputing system, Nurion (8,305 compute nodes, and 563,740 central processing units [CPUs]). For 107 permutations of one locus in MPI-GWAS, it was calculated in 600 s using 2,720 CPU cores. For 107 permutations of ~30,000–50,000 loci in over 7,000 subjects, the total elapsed time was ~4 days in the Nurion supercomputer. Thus, MPI-GWAS enables us to feasibly compute the permutation-based GWAS within a reason-able time by harnessing the power of parallel computing resources.\",\"PeriodicalId\":94288,\"journal\":{\"name\":\"Genomics & informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics & informatics\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.5808/gi.22001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.5808/gi.22001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MPI-GWAS: a supercomputing-aided permutation approach for genome-wide association studies
Permutation testing is a robust and popular approach for significance testing in genomic research that has the advantage of reducing inflated type 1 error rates; however, its computational cost is notorious in genome-wide association studies (GWAS). Here, we developed a supercomputing-aided approach to accelerate the permutation testing for GWAS, based on the message-passing interface (MPI) on parallel computing architecture. Our application, called MPI-GWAS, conducts MPI-based permutation testing using a parallel computing approach with our supercomputing system, Nurion (8,305 compute nodes, and 563,740 central processing units [CPUs]). For 107 permutations of one locus in MPI-GWAS, it was calculated in 600 s using 2,720 CPU cores. For 107 permutations of ~30,000–50,000 loci in over 7,000 subjects, the total elapsed time was ~4 days in the Nurion supercomputer. Thus, MPI-GWAS enables us to feasibly compute the permutation-based GWAS within a reason-able time by harnessing the power of parallel computing resources.