计算具有直线狭缝和螺旋狭缝区域的圆盘上数值共形映射的边界积分方程方法

Ali W. K. Sangawi
{"title":"计算具有直线狭缝和螺旋狭缝区域的圆盘上数值共形映射的边界积分方程方法","authors":"Ali W. K. Sangawi","doi":"10.21928/uhdjst.v7n1y2023.pp92-99","DOIUrl":null,"url":null,"abstract":"This article proposes a boundary integral equation method for computing numerical conformal mappings of bounded multiply connected region Ω onto the disk with rectilinear slit and spiral slits regions, Ω1 and Ω2 Initially, the process involves calculating the boundary value of the canonical region. Cauchy’s integral formula can then be used to compute the mapping of the interior values. The effectiveness of the proposed method is demonstrated using several numerical examples.","PeriodicalId":32983,"journal":{"name":"UHD Journal of Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Boundary Integral Equation Method for Computing Numerical Conformal Mappings onto the Disk with Rectilinear Slit and Spiral Slits Regions\",\"authors\":\"Ali W. K. Sangawi\",\"doi\":\"10.21928/uhdjst.v7n1y2023.pp92-99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a boundary integral equation method for computing numerical conformal mappings of bounded multiply connected region Ω onto the disk with rectilinear slit and spiral slits regions, Ω1 and Ω2 Initially, the process involves calculating the boundary value of the canonical region. Cauchy’s integral formula can then be used to compute the mapping of the interior values. The effectiveness of the proposed method is demonstrated using several numerical examples.\",\"PeriodicalId\":32983,\"journal\":{\"name\":\"UHD Journal of Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UHD Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21928/uhdjst.v7n1y2023.pp92-99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UHD Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21928/uhdjst.v7n1y2023.pp92-99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种边界积分方程方法,用于计算有界多重连通区域Ω到具有直线狭缝和螺旋狭缝区域Ω1和Ω2的圆盘上的数值共形映射。然后可以使用柯西积分公式来计算内部值的映射。通过几个算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Boundary Integral Equation Method for Computing Numerical Conformal Mappings onto the Disk with Rectilinear Slit and Spiral Slits Regions
This article proposes a boundary integral equation method for computing numerical conformal mappings of bounded multiply connected region Ω onto the disk with rectilinear slit and spiral slits regions, Ω1 and Ω2 Initially, the process involves calculating the boundary value of the canonical region. Cauchy’s integral formula can then be used to compute the mapping of the interior values. The effectiveness of the proposed method is demonstrated using several numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信