{"title":"计算具有直线狭缝和螺旋狭缝区域的圆盘上数值共形映射的边界积分方程方法","authors":"Ali W. K. Sangawi","doi":"10.21928/uhdjst.v7n1y2023.pp92-99","DOIUrl":null,"url":null,"abstract":"This article proposes a boundary integral equation method for computing numerical conformal mappings of bounded multiply connected region Ω onto the disk with rectilinear slit and spiral slits regions, Ω1 and Ω2 Initially, the process involves calculating the boundary value of the canonical region. Cauchy’s integral formula can then be used to compute the mapping of the interior values. The effectiveness of the proposed method is demonstrated using several numerical examples.","PeriodicalId":32983,"journal":{"name":"UHD Journal of Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Boundary Integral Equation Method for Computing Numerical Conformal Mappings onto the Disk with Rectilinear Slit and Spiral Slits Regions\",\"authors\":\"Ali W. K. Sangawi\",\"doi\":\"10.21928/uhdjst.v7n1y2023.pp92-99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a boundary integral equation method for computing numerical conformal mappings of bounded multiply connected region Ω onto the disk with rectilinear slit and spiral slits regions, Ω1 and Ω2 Initially, the process involves calculating the boundary value of the canonical region. Cauchy’s integral formula can then be used to compute the mapping of the interior values. The effectiveness of the proposed method is demonstrated using several numerical examples.\",\"PeriodicalId\":32983,\"journal\":{\"name\":\"UHD Journal of Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UHD Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21928/uhdjst.v7n1y2023.pp92-99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UHD Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21928/uhdjst.v7n1y2023.pp92-99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Boundary Integral Equation Method for Computing Numerical Conformal Mappings onto the Disk with Rectilinear Slit and Spiral Slits Regions
This article proposes a boundary integral equation method for computing numerical conformal mappings of bounded multiply connected region Ω onto the disk with rectilinear slit and spiral slits regions, Ω1 and Ω2 Initially, the process involves calculating the boundary value of the canonical region. Cauchy’s integral formula can then be used to compute the mapping of the interior values. The effectiveness of the proposed method is demonstrated using several numerical examples.