关于Fremlin的阿基米德-里兹空间张量积的两个结果

IF 0.6 4区 数学 Q3 MATHEMATICS
Gerard Buskes, Page Thorn
{"title":"关于Fremlin的阿基米德-里兹空间张量积的两个结果","authors":"Gerard Buskes,&nbsp;Page Thorn","doi":"10.1007/s00012-023-00822-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we characterize when, for any infinite cardinal <span>\\(\\alpha \\)</span>, the Fremlin tensor product of two Archimedean Riesz spaces (see Fremlin in Am J Math 94:777–798, 1972) is Dedekind <span>\\(\\alpha \\)</span>-complete. We also provide an example of an ideal <i>I</i> in an Archimedean Riesz space <i>E</i> such that the Fremlin tensor product of <i>I</i> with itself is not an ideal in the Fremlin tensor product of <i>E</i> with itself.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Two results on Fremlin’s Archimedean Riesz space tensor product\",\"authors\":\"Gerard Buskes,&nbsp;Page Thorn\",\"doi\":\"10.1007/s00012-023-00822-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we characterize when, for any infinite cardinal <span>\\\\(\\\\alpha \\\\)</span>, the Fremlin tensor product of two Archimedean Riesz spaces (see Fremlin in Am J Math 94:777–798, 1972) is Dedekind <span>\\\\(\\\\alpha \\\\)</span>-complete. We also provide an example of an ideal <i>I</i> in an Archimedean Riesz space <i>E</i> such that the Fremlin tensor product of <i>I</i> with itself is not an ideal in the Fremlin tensor product of <i>E</i> with itself.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-023-00822-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-023-00822-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们刻画了对于任何无穷基数\(\alpha\),两个阿基米德-里兹空间的Fremlin张量积(见Fremlin在Am J Math 94:777–7981972)何时是Dedekind\(\aalpha\)-完备的。我们还提供了阿基米德-里兹空间E中理想I的一个例子,使得I与自身的Fremlin张量积在E与自身的弗雷姆林张量积中不是理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two results on Fremlin’s Archimedean Riesz space tensor product

In this paper, we characterize when, for any infinite cardinal \(\alpha \), the Fremlin tensor product of two Archimedean Riesz spaces (see Fremlin in Am J Math 94:777–798, 1972) is Dedekind \(\alpha \)-complete. We also provide an example of an ideal I in an Archimedean Riesz space E such that the Fremlin tensor product of I with itself is not an ideal in the Fremlin tensor product of E with itself.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信