{"title":"用于光学金属传感器设计的MXene量子点的表面工程","authors":"Imtiaz Ahmad , Yanuardi Raharjo , Ateeqa Batool , Ayesha Zakir , Hirra Manzoor , Aqsa Arooj , Jaweria Khalid , Nisar Ali , Kashif Rasool","doi":"10.1016/j.teac.2023.e00210","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>One of the newly developed two-dimensional (2D) materials, MXenes Quantum dots (MQDs) has become a hot topic in materials science over the past ten years. Their potential in fluorescent sensing applications has also gained a lot of attention after the recognition of their distinctive features.</p></div><div><h3>Aim of review</h3><p>The review signifies the understanding of the synthesis, mechanism, and surface engineering of MQDs for their application as fluorescence sensors.</p></div><div><h3>Findings</h3><p><span><span>The MQDs are prepared by simple top-bottom, bottom-up, and advanced microwave approaches. The mechanism is based on quenching which involves Forster Resonance Energy Transfer<span> (FRET), Inner Filter Effect (IFE), or Photo Induced Electron Transfer (PET) in a broad range of sensing applications. However, sometimes a new analyte is added to recover the fluorescence quenching. Doping with a </span></span>heteroatom<span> (N, P, S or metal atoms) and co-doping (N-P, N-S, N-, Pt, etc.) has been frequently used to overcome the drawbacks of MQDs such as aggregation, oxidation, and low quantum yield. MQDs modification can be realized by covalent bonding, aryl diazonium </span></span>chemistry<span><span>, or non-covalent interactions. Moreover, surface defects are removed to enhance the </span>Photoluminescence<span><span> Quantum Yield (PLQY) by passivation. However, overcoming the challenges of MQDs synthesis restricted to Ti, detail sensing </span>mechanistic study<span>, and advancement in surface engineering (modification and passivation) could lead to future highly efficient and vast MQDs sensors applications.</span></span></span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"39 ","pages":"Article e00210"},"PeriodicalIF":11.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface engineering of MXene quantum dots for the designing of optical metal sensors\",\"authors\":\"Imtiaz Ahmad , Yanuardi Raharjo , Ateeqa Batool , Ayesha Zakir , Hirra Manzoor , Aqsa Arooj , Jaweria Khalid , Nisar Ali , Kashif Rasool\",\"doi\":\"10.1016/j.teac.2023.e00210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>One of the newly developed two-dimensional (2D) materials, MXenes Quantum dots (MQDs) has become a hot topic in materials science over the past ten years. Their potential in fluorescent sensing applications has also gained a lot of attention after the recognition of their distinctive features.</p></div><div><h3>Aim of review</h3><p>The review signifies the understanding of the synthesis, mechanism, and surface engineering of MQDs for their application as fluorescence sensors.</p></div><div><h3>Findings</h3><p><span><span>The MQDs are prepared by simple top-bottom, bottom-up, and advanced microwave approaches. The mechanism is based on quenching which involves Forster Resonance Energy Transfer<span> (FRET), Inner Filter Effect (IFE), or Photo Induced Electron Transfer (PET) in a broad range of sensing applications. However, sometimes a new analyte is added to recover the fluorescence quenching. Doping with a </span></span>heteroatom<span> (N, P, S or metal atoms) and co-doping (N-P, N-S, N-, Pt, etc.) has been frequently used to overcome the drawbacks of MQDs such as aggregation, oxidation, and low quantum yield. MQDs modification can be realized by covalent bonding, aryl diazonium </span></span>chemistry<span><span>, or non-covalent interactions. Moreover, surface defects are removed to enhance the </span>Photoluminescence<span><span> Quantum Yield (PLQY) by passivation. However, overcoming the challenges of MQDs synthesis restricted to Ti, detail sensing </span>mechanistic study<span>, and advancement in surface engineering (modification and passivation) could lead to future highly efficient and vast MQDs sensors applications.</span></span></span></p></div>\",\"PeriodicalId\":56032,\"journal\":{\"name\":\"Trends in Environmental Analytical Chemistry\",\"volume\":\"39 \",\"pages\":\"Article e00210\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Environmental Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214158823000168\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158823000168","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Surface engineering of MXene quantum dots for the designing of optical metal sensors
Background
One of the newly developed two-dimensional (2D) materials, MXenes Quantum dots (MQDs) has become a hot topic in materials science over the past ten years. Their potential in fluorescent sensing applications has also gained a lot of attention after the recognition of their distinctive features.
Aim of review
The review signifies the understanding of the synthesis, mechanism, and surface engineering of MQDs for their application as fluorescence sensors.
Findings
The MQDs are prepared by simple top-bottom, bottom-up, and advanced microwave approaches. The mechanism is based on quenching which involves Forster Resonance Energy Transfer (FRET), Inner Filter Effect (IFE), or Photo Induced Electron Transfer (PET) in a broad range of sensing applications. However, sometimes a new analyte is added to recover the fluorescence quenching. Doping with a heteroatom (N, P, S or metal atoms) and co-doping (N-P, N-S, N-, Pt, etc.) has been frequently used to overcome the drawbacks of MQDs such as aggregation, oxidation, and low quantum yield. MQDs modification can be realized by covalent bonding, aryl diazonium chemistry, or non-covalent interactions. Moreover, surface defects are removed to enhance the Photoluminescence Quantum Yield (PLQY) by passivation. However, overcoming the challenges of MQDs synthesis restricted to Ti, detail sensing mechanistic study, and advancement in surface engineering (modification and passivation) could lead to future highly efficient and vast MQDs sensors applications.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.