用于光学金属传感器设计的MXene量子点的表面工程

IF 11.1 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Imtiaz Ahmad , Yanuardi Raharjo , Ateeqa Batool , Ayesha Zakir , Hirra Manzoor , Aqsa Arooj , Jaweria Khalid , Nisar Ali , Kashif Rasool
{"title":"用于光学金属传感器设计的MXene量子点的表面工程","authors":"Imtiaz Ahmad ,&nbsp;Yanuardi Raharjo ,&nbsp;Ateeqa Batool ,&nbsp;Ayesha Zakir ,&nbsp;Hirra Manzoor ,&nbsp;Aqsa Arooj ,&nbsp;Jaweria Khalid ,&nbsp;Nisar Ali ,&nbsp;Kashif Rasool","doi":"10.1016/j.teac.2023.e00210","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>One of the newly developed two-dimensional (2D) materials, MXenes Quantum dots (MQDs) has become a hot topic in materials science over the past ten years. Their potential in fluorescent sensing applications has also gained a lot of attention after the recognition of their distinctive features.</p></div><div><h3>Aim of review</h3><p>The review signifies the understanding of the synthesis, mechanism, and surface engineering of MQDs for their application as fluorescence sensors.</p></div><div><h3>Findings</h3><p><span><span>The MQDs are prepared by simple top-bottom, bottom-up, and advanced microwave approaches. The mechanism is based on quenching which involves Forster Resonance Energy Transfer<span> (FRET), Inner Filter Effect (IFE), or Photo Induced Electron Transfer (PET) in a broad range of sensing applications. However, sometimes a new analyte is added to recover the fluorescence quenching. Doping with a </span></span>heteroatom<span> (N, P, S or metal atoms) and co-doping (N-P, N-S, N-, Pt, etc.) has been frequently used to overcome the drawbacks of MQDs such as aggregation, oxidation, and low quantum yield. MQDs modification can be realized by covalent bonding, aryl diazonium </span></span>chemistry<span><span>, or non-covalent interactions. Moreover, surface defects are removed to enhance the </span>Photoluminescence<span><span> Quantum Yield (PLQY) by passivation. However, overcoming the challenges of MQDs synthesis restricted to Ti, detail sensing </span>mechanistic study<span>, and advancement in surface engineering (modification and passivation) could lead to future highly efficient and vast MQDs sensors applications.</span></span></span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"39 ","pages":"Article e00210"},"PeriodicalIF":11.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface engineering of MXene quantum dots for the designing of optical metal sensors\",\"authors\":\"Imtiaz Ahmad ,&nbsp;Yanuardi Raharjo ,&nbsp;Ateeqa Batool ,&nbsp;Ayesha Zakir ,&nbsp;Hirra Manzoor ,&nbsp;Aqsa Arooj ,&nbsp;Jaweria Khalid ,&nbsp;Nisar Ali ,&nbsp;Kashif Rasool\",\"doi\":\"10.1016/j.teac.2023.e00210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>One of the newly developed two-dimensional (2D) materials, MXenes Quantum dots (MQDs) has become a hot topic in materials science over the past ten years. Their potential in fluorescent sensing applications has also gained a lot of attention after the recognition of their distinctive features.</p></div><div><h3>Aim of review</h3><p>The review signifies the understanding of the synthesis, mechanism, and surface engineering of MQDs for their application as fluorescence sensors.</p></div><div><h3>Findings</h3><p><span><span>The MQDs are prepared by simple top-bottom, bottom-up, and advanced microwave approaches. The mechanism is based on quenching which involves Forster Resonance Energy Transfer<span> (FRET), Inner Filter Effect (IFE), or Photo Induced Electron Transfer (PET) in a broad range of sensing applications. However, sometimes a new analyte is added to recover the fluorescence quenching. Doping with a </span></span>heteroatom<span> (N, P, S or metal atoms) and co-doping (N-P, N-S, N-, Pt, etc.) has been frequently used to overcome the drawbacks of MQDs such as aggregation, oxidation, and low quantum yield. MQDs modification can be realized by covalent bonding, aryl diazonium </span></span>chemistry<span><span>, or non-covalent interactions. Moreover, surface defects are removed to enhance the </span>Photoluminescence<span><span> Quantum Yield (PLQY) by passivation. However, overcoming the challenges of MQDs synthesis restricted to Ti, detail sensing </span>mechanistic study<span>, and advancement in surface engineering (modification and passivation) could lead to future highly efficient and vast MQDs sensors applications.</span></span></span></p></div>\",\"PeriodicalId\":56032,\"journal\":{\"name\":\"Trends in Environmental Analytical Chemistry\",\"volume\":\"39 \",\"pages\":\"Article e00210\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Environmental Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214158823000168\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158823000168","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

作为新兴的二维(2D)材料,MXenes量子点(MQDs)在过去十年中成为材料科学的热点。在认识到其独特的特性后,它们在荧光传感方面的应用潜力也得到了广泛的关注。综述的目的:本文综述了mqd的合成、机理、表面工程等方面的研究进展,为其作为荧光传感器的应用奠定了基础。通过简单的自顶向下、自底向上和先进的微波方法制备了mqd。该机制是基于淬火,涉及福斯特共振能量转移(FRET),内过滤效应(IFE),或光诱导电子转移(PET)在广泛的传感应用。然而,有时加入新的分析物来恢复荧光猝灭。杂原子掺杂(N、P、S或金属原子)和共掺杂(N-P、N-S、N-、Pt等)已被广泛用于克服mqd的聚集、氧化和低量子产率等缺点。MQDs的修饰可以通过共价键、芳基重氮化学或非共价相互作用来实现。此外,通过钝化去除表面缺陷,提高了光致发光量子产率。然而,克服限于Ti的mqd合成挑战,细节传感机制研究以及表面工程(改性和钝化)的进步可能会导致未来高效和广泛的mqd传感器应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface engineering of MXene quantum dots for the designing of optical metal sensors

Surface engineering of MXene quantum dots for the designing of optical metal sensors

Background

One of the newly developed two-dimensional (2D) materials, MXenes Quantum dots (MQDs) has become a hot topic in materials science over the past ten years. Their potential in fluorescent sensing applications has also gained a lot of attention after the recognition of their distinctive features.

Aim of review

The review signifies the understanding of the synthesis, mechanism, and surface engineering of MQDs for their application as fluorescence sensors.

Findings

The MQDs are prepared by simple top-bottom, bottom-up, and advanced microwave approaches. The mechanism is based on quenching which involves Forster Resonance Energy Transfer (FRET), Inner Filter Effect (IFE), or Photo Induced Electron Transfer (PET) in a broad range of sensing applications. However, sometimes a new analyte is added to recover the fluorescence quenching. Doping with a heteroatom (N, P, S or metal atoms) and co-doping (N-P, N-S, N-, Pt, etc.) has been frequently used to overcome the drawbacks of MQDs such as aggregation, oxidation, and low quantum yield. MQDs modification can be realized by covalent bonding, aryl diazonium chemistry, or non-covalent interactions. Moreover, surface defects are removed to enhance the Photoluminescence Quantum Yield (PLQY) by passivation. However, overcoming the challenges of MQDs synthesis restricted to Ti, detail sensing mechanistic study, and advancement in surface engineering (modification and passivation) could lead to future highly efficient and vast MQDs sensors applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Environmental Analytical Chemistry
Trends in Environmental Analytical Chemistry Chemistry-Analytical Chemistry
CiteScore
21.20
自引率
2.70%
发文量
34
审稿时长
44 days
期刊介绍: Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信