{"title":"利用生物废弃物合成纳米硅酸钙提高干粉灭火器性能","authors":"Nuttabodee Viriyawattana, Surachat Sinworn","doi":"10.1177/07349041231168553","DOIUrl":null,"url":null,"abstract":"Herein, we investigated nanocalcium silicate (nCa2SiO4) prepared from clam shells and rice husks for its utilisation as a chemical agent in a fire-extinguishing mixture comprising ABC dry powder. The fire-extinguishing performance was evaluated with Class A and B fires. The prepared mixture was compared with commercial mono-ammonium phosphate powder based on different parameters, namely extinguishing time, amount of extinguishing agent used, fire temperature reduction rate, powder coating on the fuel and a reburn incident. It was found that the mixture of nCa2SiO4 and ABC dry powder could extinguish Class A and B fires within 10.67 and 9 s, respectively, while commercial mono-ammonium phosphate powder required 11 and 11.33 s to extinguish Class A and B fires, respectively. Thus, the mixture of nCa2SiO4 and ABC dry powder was more effective and less consumed as compared to commercial mono-ammonium phosphate powder (Class B only). This study demonstrates the efficacy of nCa2SiO4 to improve the performance of dry chemical-based fire extinguishers.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance improvement of the dry chemical-based fire extinguishers using nanocalcium silicate synthesised from biowaste\",\"authors\":\"Nuttabodee Viriyawattana, Surachat Sinworn\",\"doi\":\"10.1177/07349041231168553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we investigated nanocalcium silicate (nCa2SiO4) prepared from clam shells and rice husks for its utilisation as a chemical agent in a fire-extinguishing mixture comprising ABC dry powder. The fire-extinguishing performance was evaluated with Class A and B fires. The prepared mixture was compared with commercial mono-ammonium phosphate powder based on different parameters, namely extinguishing time, amount of extinguishing agent used, fire temperature reduction rate, powder coating on the fuel and a reburn incident. It was found that the mixture of nCa2SiO4 and ABC dry powder could extinguish Class A and B fires within 10.67 and 9 s, respectively, while commercial mono-ammonium phosphate powder required 11 and 11.33 s to extinguish Class A and B fires, respectively. Thus, the mixture of nCa2SiO4 and ABC dry powder was more effective and less consumed as compared to commercial mono-ammonium phosphate powder (Class B only). This study demonstrates the efficacy of nCa2SiO4 to improve the performance of dry chemical-based fire extinguishers.\",\"PeriodicalId\":15772,\"journal\":{\"name\":\"Journal of Fire Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fire Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/07349041231168553\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041231168553","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Performance improvement of the dry chemical-based fire extinguishers using nanocalcium silicate synthesised from biowaste
Herein, we investigated nanocalcium silicate (nCa2SiO4) prepared from clam shells and rice husks for its utilisation as a chemical agent in a fire-extinguishing mixture comprising ABC dry powder. The fire-extinguishing performance was evaluated with Class A and B fires. The prepared mixture was compared with commercial mono-ammonium phosphate powder based on different parameters, namely extinguishing time, amount of extinguishing agent used, fire temperature reduction rate, powder coating on the fuel and a reburn incident. It was found that the mixture of nCa2SiO4 and ABC dry powder could extinguish Class A and B fires within 10.67 and 9 s, respectively, while commercial mono-ammonium phosphate powder required 11 and 11.33 s to extinguish Class A and B fires, respectively. Thus, the mixture of nCa2SiO4 and ABC dry powder was more effective and less consumed as compared to commercial mono-ammonium phosphate powder (Class B only). This study demonstrates the efficacy of nCa2SiO4 to improve the performance of dry chemical-based fire extinguishers.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).