Raphaël Deragon, A. Julien, J. Dessureault‐Rompré, J. Caron
{"title":"利用耕作有机土层深度形成水土保持管理区","authors":"Raphaël Deragon, A. Julien, J. Dessureault‐Rompré, J. Caron","doi":"10.1139/cjss-2021-0148","DOIUrl":null,"url":null,"abstract":"Abstract Cultivated Organic soils in Montreal's southwest plain are the most productive soils in the province of Quebec. After their initial drainage to enable farming, Organic soils are susceptible to many forms of degradation and soil loss. In this study, we characterized the physical, chemical, and pedological properties of 114 sites from five peatlands to form soil conservation management zones. We attempted to use the maximum peat thickness (MPT) as a soil degradation proxy. The MPT can be defined as the thickness of the layer of peat until coprogenous or mineral materials are reached. The latter are undesired growing media and are not considered in MPT calculation. A series of multivariate analysis of variance indicated that MPT was moderately related to soil degradation (optimal model's Pillai's trace = 0.495). Three soil degradation groups were defined, separated by two MPT thresholds: 60 and 100 cm. When looking at 17 different depth-property combinations, shallower sites (MPT < 60 cm) showed signs of soil degradation significantly higher than sites with an MPT above 60 cm. The second threshold was proposed for practical purposes. Then, these thresholds were used to separate the study area into spatially distinct management zones. Important spatial contrasts were found. This supports the theory that precision agriculture techniques are needed to target fields to optimize soil conservation interventions. The relationship between the MPT and soil degradation should be further explored to account for other degradation factors, and to better identify degraded soils and soils at risk.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Using cultivated organic soil depth to form soil conservation management zones\",\"authors\":\"Raphaël Deragon, A. Julien, J. Dessureault‐Rompré, J. Caron\",\"doi\":\"10.1139/cjss-2021-0148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cultivated Organic soils in Montreal's southwest plain are the most productive soils in the province of Quebec. After their initial drainage to enable farming, Organic soils are susceptible to many forms of degradation and soil loss. In this study, we characterized the physical, chemical, and pedological properties of 114 sites from five peatlands to form soil conservation management zones. We attempted to use the maximum peat thickness (MPT) as a soil degradation proxy. The MPT can be defined as the thickness of the layer of peat until coprogenous or mineral materials are reached. The latter are undesired growing media and are not considered in MPT calculation. A series of multivariate analysis of variance indicated that MPT was moderately related to soil degradation (optimal model's Pillai's trace = 0.495). Three soil degradation groups were defined, separated by two MPT thresholds: 60 and 100 cm. When looking at 17 different depth-property combinations, shallower sites (MPT < 60 cm) showed signs of soil degradation significantly higher than sites with an MPT above 60 cm. The second threshold was proposed for practical purposes. Then, these thresholds were used to separate the study area into spatially distinct management zones. Important spatial contrasts were found. This supports the theory that precision agriculture techniques are needed to target fields to optimize soil conservation interventions. The relationship between the MPT and soil degradation should be further explored to account for other degradation factors, and to better identify degraded soils and soils at risk.\",\"PeriodicalId\":9384,\"journal\":{\"name\":\"Canadian Journal of Soil Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1139/cjss-2021-0148\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2021-0148","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Using cultivated organic soil depth to form soil conservation management zones
Abstract Cultivated Organic soils in Montreal's southwest plain are the most productive soils in the province of Quebec. After their initial drainage to enable farming, Organic soils are susceptible to many forms of degradation and soil loss. In this study, we characterized the physical, chemical, and pedological properties of 114 sites from five peatlands to form soil conservation management zones. We attempted to use the maximum peat thickness (MPT) as a soil degradation proxy. The MPT can be defined as the thickness of the layer of peat until coprogenous or mineral materials are reached. The latter are undesired growing media and are not considered in MPT calculation. A series of multivariate analysis of variance indicated that MPT was moderately related to soil degradation (optimal model's Pillai's trace = 0.495). Three soil degradation groups were defined, separated by two MPT thresholds: 60 and 100 cm. When looking at 17 different depth-property combinations, shallower sites (MPT < 60 cm) showed signs of soil degradation significantly higher than sites with an MPT above 60 cm. The second threshold was proposed for practical purposes. Then, these thresholds were used to separate the study area into spatially distinct management zones. Important spatial contrasts were found. This supports the theory that precision agriculture techniques are needed to target fields to optimize soil conservation interventions. The relationship between the MPT and soil degradation should be further explored to account for other degradation factors, and to better identify degraded soils and soils at risk.
期刊介绍:
The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.