{"title":"具有时变观测器的双转子网络物理振动单元的振动控制","authors":"O. Tomchina","doi":"10.35470/2226-4116-2020-9-4-206-213","DOIUrl":null,"url":null,"abstract":"In this paper the control of oscillations in the two-rotor vibration unit is studied. It is assumed that the velocity of the oscillation of the platform cannot be accurately measured. The time-varying observer is proposed to restore it. In order to guarantee stability of the frequency and amplitude of oscillations of the vibrating parts of a two-rotor vibration unit special control algorithms based on speed-gradient methodology. Simulation results confirm stability of the synchronous rotation modes of the unbalanced rotors of the vibration unit.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Control of oscillations in two-rotor cyberphysical vibration units with time-varying observer\",\"authors\":\"O. Tomchina\",\"doi\":\"10.35470/2226-4116-2020-9-4-206-213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the control of oscillations in the two-rotor vibration unit is studied. It is assumed that the velocity of the oscillation of the platform cannot be accurately measured. The time-varying observer is proposed to restore it. In order to guarantee stability of the frequency and amplitude of oscillations of the vibrating parts of a two-rotor vibration unit special control algorithms based on speed-gradient methodology. Simulation results confirm stability of the synchronous rotation modes of the unbalanced rotors of the vibration unit.\",\"PeriodicalId\":37674,\"journal\":{\"name\":\"Cybernetics and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35470/2226-4116-2020-9-4-206-213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2020-9-4-206-213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Control of oscillations in two-rotor cyberphysical vibration units with time-varying observer
In this paper the control of oscillations in the two-rotor vibration unit is studied. It is assumed that the velocity of the oscillation of the platform cannot be accurately measured. The time-varying observer is proposed to restore it. In order to guarantee stability of the frequency and amplitude of oscillations of the vibrating parts of a two-rotor vibration unit special control algorithms based on speed-gradient methodology. Simulation results confirm stability of the synchronous rotation modes of the unbalanced rotors of the vibration unit.
期刊介绍:
The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.