部分双曲型系统平均u度量中的不稳定拓扑熵

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Ping Huang, Chenwei Wang, Ercai Chen
{"title":"部分双曲型系统平均u度量中的不稳定拓扑熵","authors":"Ping Huang, Chenwei Wang, Ercai Chen","doi":"10.1080/14689367.2021.1923659","DOIUrl":null,"url":null,"abstract":"In this paper, we give the definition of unstable topological entropy in mean u-metrics (the mean metrics in the unstable manifold) for partially hyperbolic systems. By establishing Katok's entropy formula of unstable metric entropy in mean u-metrics, we prove that the new unstable topological entropy is equal to the unstable topological entropy defined in Bowen u-metrics (the Bowen metrics in the unstable manifold). Finally, we obtain the variational principle related to the unstable topological entropy defined in mean u-metrics and unstable metric entropy, which states that the unstable topological entropy defined in mean u-metrics is the supremum of the unstable metric entropy taken over all invariant measures.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"36 1","pages":"387 - 403"},"PeriodicalIF":0.5000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14689367.2021.1923659","citationCount":"0","resultStr":"{\"title\":\"Unstable topological entropy in mean u-metrics for partially hyperbolic systems\",\"authors\":\"Ping Huang, Chenwei Wang, Ercai Chen\",\"doi\":\"10.1080/14689367.2021.1923659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give the definition of unstable topological entropy in mean u-metrics (the mean metrics in the unstable manifold) for partially hyperbolic systems. By establishing Katok's entropy formula of unstable metric entropy in mean u-metrics, we prove that the new unstable topological entropy is equal to the unstable topological entropy defined in Bowen u-metrics (the Bowen metrics in the unstable manifold). Finally, we obtain the variational principle related to the unstable topological entropy defined in mean u-metrics and unstable metric entropy, which states that the unstable topological entropy defined in mean u-metrics is the supremum of the unstable metric entropy taken over all invariant measures.\",\"PeriodicalId\":50564,\"journal\":{\"name\":\"Dynamical Systems-An International Journal\",\"volume\":\"36 1\",\"pages\":\"387 - 403\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/14689367.2021.1923659\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamical Systems-An International Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2021.1923659\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2021.1923659","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了部分双曲系统的均值u度量(不稳定流形上的均值度量)中不稳定拓扑熵的定义。通过建立均值u度量中不稳定度量熵的Katok熵公式,我们证明了新的不稳定拓扑熵等于Bowen u度量中定义的不稳定的拓扑熵(不稳定流形中的Bowen度量)。最后,我们得到了与均值u-度量中定义的不稳定拓扑熵和不稳定度量熵相关的变分原理,该变分原理表明均值u-测度中定义的非稳定拓扑熵是所有不变测度上的不稳定度量的上确界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unstable topological entropy in mean u-metrics for partially hyperbolic systems
In this paper, we give the definition of unstable topological entropy in mean u-metrics (the mean metrics in the unstable manifold) for partially hyperbolic systems. By establishing Katok's entropy formula of unstable metric entropy in mean u-metrics, we prove that the new unstable topological entropy is equal to the unstable topological entropy defined in Bowen u-metrics (the Bowen metrics in the unstable manifold). Finally, we obtain the variational principle related to the unstable topological entropy defined in mean u-metrics and unstable metric entropy, which states that the unstable topological entropy defined in mean u-metrics is the supremum of the unstable metric entropy taken over all invariant measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal: •Differential equations •Bifurcation theory •Hamiltonian and Lagrangian dynamics •Hyperbolic dynamics •Ergodic theory •Topological and smooth dynamics •Random dynamical systems •Applications in technology, engineering and natural and life sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信