C. Helbrecht, M. Langhans, T. Meckel, M. Biesalski, S. Schabel
{"title":"使用实验室再生纤维片分析纤维直径、纤维原纤化和细粒含量对孔结构和毛细管流动的影响","authors":"C. Helbrecht, M. Langhans, T. Meckel, M. Biesalski, S. Schabel","doi":"10.1515/npprj-2022-0077","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this work is to investigate the influence of fiber fibrillation and fines on the pore structure of well-defined regenerated fiber sheets as well as the water flow through the sheet. For this purpose, sheets were produced with refined, fibrillated fibers only, with unfibrillated fibers and fines, as well as with fibrillated fibers and fines. Next, the samples were analyzed by brightfield and fluorescence microscopy, mercury porosimetry, and an ascending test. Both the fibrils and the added fines reach into the pores between the fibers or are deposited there. As a result, pore size decreases and capillary flow slows down. The two effects overlap when the fiber surface is fibrillated and fines are present. Sheets with thicker fibers form a pore structure with larger pores in between the fibers. However, such a change in pore size has no significant influence on the flow of water through the sheet in the performed ascending tests. It is shown that a statistical model with the parameters fibrillation and fines content can be used to describe the ascending rate nearly as well as the Lucas–Washburn equation. Consequently, the equation could be improved by the addition of further fiber and sheet properties.","PeriodicalId":19315,"journal":{"name":"Nordic Pulp & Paper Research Journal","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyses of the effects of fiber diameter, fiber fibrillation, and fines content on the pore structure and capillary flow using laboratory sheets of regenerated fibers\",\"authors\":\"C. Helbrecht, M. Langhans, T. Meckel, M. Biesalski, S. Schabel\",\"doi\":\"10.1515/npprj-2022-0077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this work is to investigate the influence of fiber fibrillation and fines on the pore structure of well-defined regenerated fiber sheets as well as the water flow through the sheet. For this purpose, sheets were produced with refined, fibrillated fibers only, with unfibrillated fibers and fines, as well as with fibrillated fibers and fines. Next, the samples were analyzed by brightfield and fluorescence microscopy, mercury porosimetry, and an ascending test. Both the fibrils and the added fines reach into the pores between the fibers or are deposited there. As a result, pore size decreases and capillary flow slows down. The two effects overlap when the fiber surface is fibrillated and fines are present. Sheets with thicker fibers form a pore structure with larger pores in between the fibers. However, such a change in pore size has no significant influence on the flow of water through the sheet in the performed ascending tests. It is shown that a statistical model with the parameters fibrillation and fines content can be used to describe the ascending rate nearly as well as the Lucas–Washburn equation. Consequently, the equation could be improved by the addition of further fiber and sheet properties.\",\"PeriodicalId\":19315,\"journal\":{\"name\":\"Nordic Pulp & Paper Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nordic Pulp & Paper Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/npprj-2022-0077\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Pulp & Paper Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/npprj-2022-0077","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Analyses of the effects of fiber diameter, fiber fibrillation, and fines content on the pore structure and capillary flow using laboratory sheets of regenerated fibers
Abstract The aim of this work is to investigate the influence of fiber fibrillation and fines on the pore structure of well-defined regenerated fiber sheets as well as the water flow through the sheet. For this purpose, sheets were produced with refined, fibrillated fibers only, with unfibrillated fibers and fines, as well as with fibrillated fibers and fines. Next, the samples were analyzed by brightfield and fluorescence microscopy, mercury porosimetry, and an ascending test. Both the fibrils and the added fines reach into the pores between the fibers or are deposited there. As a result, pore size decreases and capillary flow slows down. The two effects overlap when the fiber surface is fibrillated and fines are present. Sheets with thicker fibers form a pore structure with larger pores in between the fibers. However, such a change in pore size has no significant influence on the flow of water through the sheet in the performed ascending tests. It is shown that a statistical model with the parameters fibrillation and fines content can be used to describe the ascending rate nearly as well as the Lucas–Washburn equation. Consequently, the equation could be improved by the addition of further fiber and sheet properties.
期刊介绍:
Nordic Pulp & Paper Research Journal (NPPRJ) is a peer-reviewed, international scientific journal covering to-date science and technology research in the areas of wood-based biomass:
Pulp and paper: products and processes
Wood constituents: characterization and nanotechnologies
Bio-refining, recovery and energy issues
Utilization of side-streams from pulping processes
Novel fibre-based, sustainable and smart materials.
The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
Topics
Cutting-edge topics such as, but not limited to, the following:
Biorefining, energy issues
Wood fibre characterization and nanotechnology
Side-streams and new products from wood pulping processes
Mechanical pulping
Chemical pulping, recovery and bleaching
Paper technology
Paper chemistry and physics
Coating
Paper-ink-interactions
Recycling
Environmental issues.