L. Medaris, B. Jicha, B. Singer, B. Wathen, Youjuan Li, S. Driese
{"title":"评估古土壤的风化和钾变质作用程度:以劳伦大陆中部元古代、寒武纪和白垩纪古土壤为例","authors":"L. Medaris, B. Jicha, B. Singer, B. Wathen, Youjuan Li, S. Driese","doi":"10.1086/724252","DOIUrl":null,"url":null,"abstract":"Six Proterozoic, two Cambrian, and two Cretaceous paleosols in the Lake Superior region of midcontinental Laurentia were investigated in detail. All but the Cretaceous paleosols experienced potassium metasomatism, which resulted in the precipitation of muscovite in Proterozoic paleosols or illite and microcline in Cambrian paleosols. A comparison of the magnitude of potassium metasomatism among the paleosols is provided by depth-normalized mass flux (DNMF), where DNMF=1000×[(mass flux)/(depth of weathering)], which normalizes for different thicknesses of weathering profiles. Average DNMF values for the total addition of K2O are 0.98 ± 0.19 mol cm−3 for the Proterozoic paleosols and 1.27 ± 0.06 mol cm−3 for the Cambrian paleosols. The ages of potassium metasomatism were determined by 40Ar/39Ar isotopic dating of metasomatic muscovite in the Proterozoic McGrath, Ville Marie, and Baraboo paleosols, which yielded ages of 1742 ± 3, 1589 ± 3, and 1467 ± 11 Ma, respectively, the former being coeval with the Yavapai orogeny and the latter with the Baraboo orogeny. Metasomatic microcline in the Cambrian Trempealeau paleosol yielded a plateau age of 488.0 ± 1.0 Ma, which corresponds to the age of the Cambrian-Ordovician boundary. SiO2, CaO, and Na2O were substantially removed from the paleosols by weathering, as was K2O (before metasomatism). The average total amount of SiO2, CaO, Na2O, and K2O removed was 17.6% ± 1.9% from six Proterozoic paleosols, 28.5% ± 4.2% from two Cambrian paleosols, 36.5% ± 8.6% from two Cretaceous paleosols, and 34.2% ± 2.7% from five modern soils. The greater magnitude of weathering in the Phanerozoic weathering profiles compared with the Proterozoic ones, despite lower levels of CO2 in the Phanerozoic atmosphere, may reflect the emergence of land plants at ∼500 Ma and their profound effects on weathering.","PeriodicalId":54826,"journal":{"name":"Journal of Geology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Magnitudes of Weathering and Potassium Metasomatism in Paleosols: Examples from Proterozoic, Cambrian, and Cretaceous Paleosols in Midcontinental Laurentia\",\"authors\":\"L. Medaris, B. Jicha, B. Singer, B. Wathen, Youjuan Li, S. Driese\",\"doi\":\"10.1086/724252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Six Proterozoic, two Cambrian, and two Cretaceous paleosols in the Lake Superior region of midcontinental Laurentia were investigated in detail. All but the Cretaceous paleosols experienced potassium metasomatism, which resulted in the precipitation of muscovite in Proterozoic paleosols or illite and microcline in Cambrian paleosols. A comparison of the magnitude of potassium metasomatism among the paleosols is provided by depth-normalized mass flux (DNMF), where DNMF=1000×[(mass flux)/(depth of weathering)], which normalizes for different thicknesses of weathering profiles. Average DNMF values for the total addition of K2O are 0.98 ± 0.19 mol cm−3 for the Proterozoic paleosols and 1.27 ± 0.06 mol cm−3 for the Cambrian paleosols. The ages of potassium metasomatism were determined by 40Ar/39Ar isotopic dating of metasomatic muscovite in the Proterozoic McGrath, Ville Marie, and Baraboo paleosols, which yielded ages of 1742 ± 3, 1589 ± 3, and 1467 ± 11 Ma, respectively, the former being coeval with the Yavapai orogeny and the latter with the Baraboo orogeny. Metasomatic microcline in the Cambrian Trempealeau paleosol yielded a plateau age of 488.0 ± 1.0 Ma, which corresponds to the age of the Cambrian-Ordovician boundary. SiO2, CaO, and Na2O were substantially removed from the paleosols by weathering, as was K2O (before metasomatism). The average total amount of SiO2, CaO, Na2O, and K2O removed was 17.6% ± 1.9% from six Proterozoic paleosols, 28.5% ± 4.2% from two Cambrian paleosols, 36.5% ± 8.6% from two Cretaceous paleosols, and 34.2% ± 2.7% from five modern soils. The greater magnitude of weathering in the Phanerozoic weathering profiles compared with the Proterozoic ones, despite lower levels of CO2 in the Phanerozoic atmosphere, may reflect the emergence of land plants at ∼500 Ma and their profound effects on weathering.\",\"PeriodicalId\":54826,\"journal\":{\"name\":\"Journal of Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1086/724252\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1086/724252","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
Evaluating the Magnitudes of Weathering and Potassium Metasomatism in Paleosols: Examples from Proterozoic, Cambrian, and Cretaceous Paleosols in Midcontinental Laurentia
Six Proterozoic, two Cambrian, and two Cretaceous paleosols in the Lake Superior region of midcontinental Laurentia were investigated in detail. All but the Cretaceous paleosols experienced potassium metasomatism, which resulted in the precipitation of muscovite in Proterozoic paleosols or illite and microcline in Cambrian paleosols. A comparison of the magnitude of potassium metasomatism among the paleosols is provided by depth-normalized mass flux (DNMF), where DNMF=1000×[(mass flux)/(depth of weathering)], which normalizes for different thicknesses of weathering profiles. Average DNMF values for the total addition of K2O are 0.98 ± 0.19 mol cm−3 for the Proterozoic paleosols and 1.27 ± 0.06 mol cm−3 for the Cambrian paleosols. The ages of potassium metasomatism were determined by 40Ar/39Ar isotopic dating of metasomatic muscovite in the Proterozoic McGrath, Ville Marie, and Baraboo paleosols, which yielded ages of 1742 ± 3, 1589 ± 3, and 1467 ± 11 Ma, respectively, the former being coeval with the Yavapai orogeny and the latter with the Baraboo orogeny. Metasomatic microcline in the Cambrian Trempealeau paleosol yielded a plateau age of 488.0 ± 1.0 Ma, which corresponds to the age of the Cambrian-Ordovician boundary. SiO2, CaO, and Na2O were substantially removed from the paleosols by weathering, as was K2O (before metasomatism). The average total amount of SiO2, CaO, Na2O, and K2O removed was 17.6% ± 1.9% from six Proterozoic paleosols, 28.5% ± 4.2% from two Cambrian paleosols, 36.5% ± 8.6% from two Cretaceous paleosols, and 34.2% ± 2.7% from five modern soils. The greater magnitude of weathering in the Phanerozoic weathering profiles compared with the Proterozoic ones, despite lower levels of CO2 in the Phanerozoic atmosphere, may reflect the emergence of land plants at ∼500 Ma and their profound effects on weathering.
期刊介绍:
One of the oldest journals in geology, The Journal of Geology has since 1893 promoted the systematic philosophical and fundamental study of geology.
The Journal publishes original research across a broad range of subfields in geology, including geophysics, geochemistry, sedimentology, geomorphology, petrology, plate tectonics, volcanology, structural geology, mineralogy, and planetary sciences. Many of its articles have wide appeal for geologists, present research of topical relevance, and offer new geological insights through the application of innovative approaches and methods.