C. Ashley Barnes, Mary R. Starich, Nico Tjandra, Pushpa Mishra
{"title":"同时测量1HC/N-R2用于快速获取蛋白质的主链和侧链顺磁弛豫增强(PREs)","authors":"C. Ashley Barnes, Mary R. Starich, Nico Tjandra, Pushpa Mishra","doi":"10.1007/s10858-021-00359-9","DOIUrl":null,"url":null,"abstract":"<p>Paramagnetic relaxation enhancements (PREs) are routinely used to provide long-range distance restraints for the determination of protein structures, to resolve protein dynamics, ligand–protein binding sites, and lowly populated species, using Nuclear Magnetic Resonance Spectroscopy (NMR). Here, we propose a simultaneous <sup>1</sup>H-<sup>15</sup>?N, <sup>1</sup>H-<sup>13</sup>C SESAME based pulse scheme for the rapid acquisition of <sup>1</sup>H<sup>C/N</sup>-R<sub>2</sub> relaxation rates for the determination of backbone and sidechain PREs of proteins. The <sup>1</sup>H<sup>N</sup>-R<sub>2</sub> rates from the traditional and our approach on Ubiquitin (UBQ) are well correlated (R<sup>2</sup>?=?0.99), revealing their potential to be used quantitatively. Comparison of the S57C UBQ calculated and experimental PREs provided backbone and side chain Q factors of 0.23 and 0.24, respectively, well-fitted to the UBQ NMR structure, showing that our approach can be used to acquire accurate PRE rates from the functionally important sites of proteins but in at least half the time as traditional methods.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"75 2-3","pages":"109 - 118"},"PeriodicalIF":1.3000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00359-9","citationCount":"0","resultStr":"{\"title\":\"Simultaneous measurement of 1HC/N-R2′s for rapid acquisition of backbone and sidechain paramagnetic relaxation enhancements (PREs) in proteins\",\"authors\":\"C. Ashley Barnes, Mary R. Starich, Nico Tjandra, Pushpa Mishra\",\"doi\":\"10.1007/s10858-021-00359-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Paramagnetic relaxation enhancements (PREs) are routinely used to provide long-range distance restraints for the determination of protein structures, to resolve protein dynamics, ligand–protein binding sites, and lowly populated species, using Nuclear Magnetic Resonance Spectroscopy (NMR). Here, we propose a simultaneous <sup>1</sup>H-<sup>15</sup>?N, <sup>1</sup>H-<sup>13</sup>C SESAME based pulse scheme for the rapid acquisition of <sup>1</sup>H<sup>C/N</sup>-R<sub>2</sub> relaxation rates for the determination of backbone and sidechain PREs of proteins. The <sup>1</sup>H<sup>N</sup>-R<sub>2</sub> rates from the traditional and our approach on Ubiquitin (UBQ) are well correlated (R<sup>2</sup>?=?0.99), revealing their potential to be used quantitatively. Comparison of the S57C UBQ calculated and experimental PREs provided backbone and side chain Q factors of 0.23 and 0.24, respectively, well-fitted to the UBQ NMR structure, showing that our approach can be used to acquire accurate PRE rates from the functionally important sites of proteins but in at least half the time as traditional methods.</p>\",\"PeriodicalId\":613,\"journal\":{\"name\":\"Journal of Biomolecular NMR\",\"volume\":\"75 2-3\",\"pages\":\"109 - 118\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10858-021-00359-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular NMR\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-021-00359-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-021-00359-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Simultaneous measurement of 1HC/N-R2′s for rapid acquisition of backbone and sidechain paramagnetic relaxation enhancements (PREs) in proteins
Paramagnetic relaxation enhancements (PREs) are routinely used to provide long-range distance restraints for the determination of protein structures, to resolve protein dynamics, ligand–protein binding sites, and lowly populated species, using Nuclear Magnetic Resonance Spectroscopy (NMR). Here, we propose a simultaneous 1H-15?N, 1H-13C SESAME based pulse scheme for the rapid acquisition of 1HC/N-R2 relaxation rates for the determination of backbone and sidechain PREs of proteins. The 1HN-R2 rates from the traditional and our approach on Ubiquitin (UBQ) are well correlated (R2?=?0.99), revealing their potential to be used quantitatively. Comparison of the S57C UBQ calculated and experimental PREs provided backbone and side chain Q factors of 0.23 and 0.24, respectively, well-fitted to the UBQ NMR structure, showing that our approach can be used to acquire accurate PRE rates from the functionally important sites of proteins but in at least half the time as traditional methods.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.