E. Elmanto, Marc Hoyois, Adeel A. Khan, V. Sosnilo, Maria Yakerson
{"title":"代数协上的模","authors":"E. Elmanto, Marc Hoyois, Adeel A. Khan, V. Sosnilo, Maria Yakerson","doi":"10.1017/fmp.2020.13","DOIUrl":null,"url":null,"abstract":"Abstract We prove that the $\\infty $-category of $\\mathrm{MGL} $-modules over any scheme is equivalent to the $\\infty $-category of motivic spectra with finite syntomic transfers. Using the recognition principle for infinite $\\mathbf{P} ^1$-loop spaces, we deduce that very effective $\\mathrm{MGL} $-modules over a perfect field are equivalent to grouplike motivic spaces with finite syntomic transfers. Along the way, we describe any motivic Thom spectrum built from virtual vector bundles of nonnegative rank in terms of the moduli stack of finite quasi-smooth derived schemes with the corresponding tangential structure. In particular, over a regular equicharacteristic base, we show that $\\Omega ^\\infty _{\\mathbf{P} ^1}\\mathrm{MGL} $ is the $\\mathbf{A} ^1$-homotopy type of the moduli stack of virtual finite flat local complete intersections, and that for $n>0$, $\\Omega ^\\infty _{\\mathbf{P} ^1} \\Sigma ^n_{\\mathbf{P} ^1} \\mathrm{MGL} $ is the $\\mathbf{A} ^1$-homotopy type of the moduli stack of finite quasi-smooth derived schemes of virtual dimension $-n$.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/fmp.2020.13","citationCount":"41","resultStr":"{\"title\":\"Modules over algebraic cobordism\",\"authors\":\"E. Elmanto, Marc Hoyois, Adeel A. Khan, V. Sosnilo, Maria Yakerson\",\"doi\":\"10.1017/fmp.2020.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove that the $\\\\infty $-category of $\\\\mathrm{MGL} $-modules over any scheme is equivalent to the $\\\\infty $-category of motivic spectra with finite syntomic transfers. Using the recognition principle for infinite $\\\\mathbf{P} ^1$-loop spaces, we deduce that very effective $\\\\mathrm{MGL} $-modules over a perfect field are equivalent to grouplike motivic spaces with finite syntomic transfers. Along the way, we describe any motivic Thom spectrum built from virtual vector bundles of nonnegative rank in terms of the moduli stack of finite quasi-smooth derived schemes with the corresponding tangential structure. In particular, over a regular equicharacteristic base, we show that $\\\\Omega ^\\\\infty _{\\\\mathbf{P} ^1}\\\\mathrm{MGL} $ is the $\\\\mathbf{A} ^1$-homotopy type of the moduli stack of virtual finite flat local complete intersections, and that for $n>0$, $\\\\Omega ^\\\\infty _{\\\\mathbf{P} ^1} \\\\Sigma ^n_{\\\\mathbf{P} ^1} \\\\mathrm{MGL} $ is the $\\\\mathbf{A} ^1$-homotopy type of the moduli stack of finite quasi-smooth derived schemes of virtual dimension $-n$.\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2019-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/fmp.2020.13\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2020.13\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2020.13","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract We prove that the $\infty $-category of $\mathrm{MGL} $-modules over any scheme is equivalent to the $\infty $-category of motivic spectra with finite syntomic transfers. Using the recognition principle for infinite $\mathbf{P} ^1$-loop spaces, we deduce that very effective $\mathrm{MGL} $-modules over a perfect field are equivalent to grouplike motivic spaces with finite syntomic transfers. Along the way, we describe any motivic Thom spectrum built from virtual vector bundles of nonnegative rank in terms of the moduli stack of finite quasi-smooth derived schemes with the corresponding tangential structure. In particular, over a regular equicharacteristic base, we show that $\Omega ^\infty _{\mathbf{P} ^1}\mathrm{MGL} $ is the $\mathbf{A} ^1$-homotopy type of the moduli stack of virtual finite flat local complete intersections, and that for $n>0$, $\Omega ^\infty _{\mathbf{P} ^1} \Sigma ^n_{\mathbf{P} ^1} \mathrm{MGL} $ is the $\mathbf{A} ^1$-homotopy type of the moduli stack of finite quasi-smooth derived schemes of virtual dimension $-n$.
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.