稳定酉基、超焦子代数和基本Morita等价

Pub Date : 2023-07-03 DOI:10.1007/s10468-023-10216-y
Tiberiu Coconeţ, Constantin-Cosmin Todea
{"title":"稳定酉基、超焦子代数和基本Morita等价","authors":"Tiberiu Coconeţ,&nbsp;Constantin-Cosmin Todea","doi":"10.1007/s10468-023-10216-y","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate Conjecture 1.5 introduced by Barker and Gelvin (J. Gr. Theory <b>25</b>, 973–995 2022), which says that any source algebra of a <i>p</i>-block (<i>p</i> is a prime) of a finite group has the unit group containing a basis stabilized by the left and right actions of the defect group. We will reduce this conjecture to a similar statement about the bases of the hyperfocal subalgebras in the source algebras. We will also show that such unital bases of source algebras of two <i>p</i>-blocks, stabilized by the left and right actions of the defect group, are transported through basic Morita equivalences.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable Unital Bases, Hyperfocal Subalgebras and Basic Morita Equivalences\",\"authors\":\"Tiberiu Coconeţ,&nbsp;Constantin-Cosmin Todea\",\"doi\":\"10.1007/s10468-023-10216-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate Conjecture 1.5 introduced by Barker and Gelvin (J. Gr. Theory <b>25</b>, 973–995 2022), which says that any source algebra of a <i>p</i>-block (<i>p</i> is a prime) of a finite group has the unit group containing a basis stabilized by the left and right actions of the defect group. We will reduce this conjecture to a similar statement about the bases of the hyperfocal subalgebras in the source algebras. We will also show that such unital bases of source algebras of two <i>p</i>-blocks, stabilized by the left and right actions of the defect group, are transported through basic Morita equivalences.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10216-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10216-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了巴克和盖尔文(J. Gr. Theory 25, 973-995 2022)提出的猜想 1.5,即有限群的 p 块(p 是素数)的任何源代数都有包含由缺陷群的左作用和右作用稳定的基的单位群。我们将把这一猜想简化为关于源代数中超焦点子代数基的类似声明。我们还将证明,通过缺陷群的左右作用而稳定的两个 p 块的源代数的这种单元基是通过基本的莫里塔等价关系传递的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stable Unital Bases, Hyperfocal Subalgebras and Basic Morita Equivalences

We investigate Conjecture 1.5 introduced by Barker and Gelvin (J. Gr. Theory 25, 973–995 2022), which says that any source algebra of a p-block (p is a prime) of a finite group has the unit group containing a basis stabilized by the left and right actions of the defect group. We will reduce this conjecture to a similar statement about the bases of the hyperfocal subalgebras in the source algebras. We will also show that such unital bases of source algebras of two p-blocks, stabilized by the left and right actions of the defect group, are transported through basic Morita equivalences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信