Drauzio E.N. Rangel , Mavis A. Acheampong , Helen G. Bignayan , Hernani G. Golez , Donald W. Roberts
{"title":"昆虫病原真菌分生孢子的大规模生产及其大规模生产的分生孢子对UV-B辐射和热量的耐受性","authors":"Drauzio E.N. Rangel , Mavis A. Acheampong , Helen G. Bignayan , Hernani G. Golez , Donald W. Roberts","doi":"10.1016/j.funbio.2023.07.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>We investigated conidial mass production of eight isolates of six entomopathogenic fungi (EPF), </span><em>Aphanocladium album</em> (ARSEF 1329), <span><em>Beauveria bassiana</em></span> (ARSEF 252 and 3462), <span><em>Lecanicillium</em><em> aphanocladii</em></span> (ARSEF 6433), <span><span>Metarhizium anisopliae</span></span> sensu lato (ARSEF 2341), <em>Metarhizium pingshaense</em> (ARSEF 1545), and <em>Simplicillium lanosoniveum</em><span> (ARSEF 6430 and 6651) on white or brown rice at four moisture conditions (75–100%). The tolerance of mass-produced conidia<span><span> of the eight fungal isolates<span> to UV-B radiation and heat (45 °C) were also evaluated. For each moisture content<span> compared, a 20-g sample of rice in a polypropylene bag was inoculated with each fungal isolate in three replicates and incubated at 28 ± 1 °C for 14 days. Conidia were then harvested by washing the substrate, and conidial concentrations determined by haemocytometer counts. Conidial suspensions were inoculated on PDAY with 0.002% </span></span></span>benomyl in Petri plates and exposed to 978 mW m</span></span><sup>−2</sup> of Quaite-weighted UV-B for 2 h. Additionally, conidial suspensions were exposed to 45 °C for 3 h, and aliquots inoculated on PDAY with benomyl. The plates were incubated at 28 ± 1 °C, and germination was assessed at 400 × magnification after 48 h. Conidial production was generally higher on white rice than on brown rice for all fungal species, except for <em>L. aphanocladii</em> ARSEF 6433, regardless of moisture combinations. The 100% moisture condition provided higher conidial production for <em>B. bassiana</em> (ARSEF 252 and ARSEF 3462) and <em>M. anisopliae</em> (ARSEF 2341) isolates, while the addition of 10% peanut oil enhanced conidial yield for <em>S. lanosoniveum</em> isolate ARSEF 6430. <em>B. bassiana</em> ARSEF 3462 on white rice with 100% water yielded the highest conidial production (approximately 1.3 × 10<sup>10</sup> conidia g<sup>−1</sup> of substrate). Conidia produced on white rice with the different moisture conditions did not differ in tolerance to UV-B radiation or heat. However, high tolerance to UV-B radiation and heat was observed for <em>B. bassiana</em>, <em>M. anisopliae,</em> and <em>A. album</em> isolates. Heat-treated conidia of <em>S. lanosoniveum</em> and <em>L. aphanocladii</em> did not germinate.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conidial mass production of entomopathogenic fungi and tolerance of their mass-produced conidia to UV-B radiation and heat\",\"authors\":\"Drauzio E.N. Rangel , Mavis A. Acheampong , Helen G. Bignayan , Hernani G. Golez , Donald W. Roberts\",\"doi\":\"10.1016/j.funbio.2023.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We investigated conidial mass production of eight isolates of six entomopathogenic fungi (EPF), </span><em>Aphanocladium album</em> (ARSEF 1329), <span><em>Beauveria bassiana</em></span> (ARSEF 252 and 3462), <span><em>Lecanicillium</em><em> aphanocladii</em></span> (ARSEF 6433), <span><span>Metarhizium anisopliae</span></span> sensu lato (ARSEF 2341), <em>Metarhizium pingshaense</em> (ARSEF 1545), and <em>Simplicillium lanosoniveum</em><span> (ARSEF 6430 and 6651) on white or brown rice at four moisture conditions (75–100%). The tolerance of mass-produced conidia<span><span> of the eight fungal isolates<span> to UV-B radiation and heat (45 °C) were also evaluated. For each moisture content<span> compared, a 20-g sample of rice in a polypropylene bag was inoculated with each fungal isolate in three replicates and incubated at 28 ± 1 °C for 14 days. Conidia were then harvested by washing the substrate, and conidial concentrations determined by haemocytometer counts. Conidial suspensions were inoculated on PDAY with 0.002% </span></span></span>benomyl in Petri plates and exposed to 978 mW m</span></span><sup>−2</sup> of Quaite-weighted UV-B for 2 h. Additionally, conidial suspensions were exposed to 45 °C for 3 h, and aliquots inoculated on PDAY with benomyl. The plates were incubated at 28 ± 1 °C, and germination was assessed at 400 × magnification after 48 h. Conidial production was generally higher on white rice than on brown rice for all fungal species, except for <em>L. aphanocladii</em> ARSEF 6433, regardless of moisture combinations. The 100% moisture condition provided higher conidial production for <em>B. bassiana</em> (ARSEF 252 and ARSEF 3462) and <em>M. anisopliae</em> (ARSEF 2341) isolates, while the addition of 10% peanut oil enhanced conidial yield for <em>S. lanosoniveum</em> isolate ARSEF 6430. <em>B. bassiana</em> ARSEF 3462 on white rice with 100% water yielded the highest conidial production (approximately 1.3 × 10<sup>10</sup> conidia g<sup>−1</sup> of substrate). Conidia produced on white rice with the different moisture conditions did not differ in tolerance to UV-B radiation or heat. However, high tolerance to UV-B radiation and heat was observed for <em>B. bassiana</em>, <em>M. anisopliae,</em> and <em>A. album</em> isolates. Heat-treated conidia of <em>S. lanosoniveum</em> and <em>L. aphanocladii</em> did not germinate.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878614623000764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614623000764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了六种昆虫病原真菌(EPF)的八个分离株的分生孢子大量产生的情况、在四种湿度条件(75%-100%)下,对白米或糙米上的厌氧菌(Metarhizium anisopliae sensu lato)(ARSEF 2341)、平夏菌(Metarhizium pingshaense)(ARSEF 1545)和绵霉菌(Simplicillium lanosoniveum)(ARSEF 6430 和 6651)的耐受性。此外,还评估了 8 种真菌分离物的大量生产的分生孢子对紫外线-B 辐射和热量(45 °C)的耐受性。在所比较的每种湿度条件下,将装在聚丙烯袋中的 20 克大米样品与每种真菌分离物进行三次重复接种,并在 28 ± 1 °C 下培养 14 天。然后通过清洗基质收获分生孢子,并通过血细胞计数器测定分生孢子浓度。将分生孢子悬浮液接种到装有 0.002% 苯菌灵的 PDAY 培养皿中,并在 978 mW m-2 的 Quaite-weighted UV-B 下暴露 2 小时。除 L. aphanocladii ARSEF 6433 外,无论湿度组合如何,所有真菌种类在白米上的分生孢子产量普遍高于糙米。在 100%湿度条件下,B. bassiana(ARSEF 252 和 ARSEF 3462)和 M. anisopliae(ARSEF 2341)分离物的分生孢子产量较高,而添加 10%的花生油可提高 S. lanosoniveum 分离物 ARSEF 6430 的分生孢子产量。B. bassiana ARSEF 3462 在含水量为 100%的白米上产生的分生孢子最多(约为 1.3 × 1010 个分生孢子 g-1 基质)。在不同水分条件下的白米上产生的分生孢子对紫外线-B 辐射或热的耐受性没有差异。然而,B. bassiana、M. anisopliae 和 A. album 分离物对紫外线-B 辐射和加热的耐受性很高。经热处理的 S. lanosoniveum 和 L. aphanocladii 分生孢子不发芽。
Conidial mass production of entomopathogenic fungi and tolerance of their mass-produced conidia to UV-B radiation and heat
We investigated conidial mass production of eight isolates of six entomopathogenic fungi (EPF), Aphanocladium album (ARSEF 1329), Beauveria bassiana (ARSEF 252 and 3462), Lecanicillium aphanocladii (ARSEF 6433), Metarhizium anisopliae sensu lato (ARSEF 2341), Metarhizium pingshaense (ARSEF 1545), and Simplicillium lanosoniveum (ARSEF 6430 and 6651) on white or brown rice at four moisture conditions (75–100%). The tolerance of mass-produced conidia of the eight fungal isolates to UV-B radiation and heat (45 °C) were also evaluated. For each moisture content compared, a 20-g sample of rice in a polypropylene bag was inoculated with each fungal isolate in three replicates and incubated at 28 ± 1 °C for 14 days. Conidia were then harvested by washing the substrate, and conidial concentrations determined by haemocytometer counts. Conidial suspensions were inoculated on PDAY with 0.002% benomyl in Petri plates and exposed to 978 mW m−2 of Quaite-weighted UV-B for 2 h. Additionally, conidial suspensions were exposed to 45 °C for 3 h, and aliquots inoculated on PDAY with benomyl. The plates were incubated at 28 ± 1 °C, and germination was assessed at 400 × magnification after 48 h. Conidial production was generally higher on white rice than on brown rice for all fungal species, except for L. aphanocladii ARSEF 6433, regardless of moisture combinations. The 100% moisture condition provided higher conidial production for B. bassiana (ARSEF 252 and ARSEF 3462) and M. anisopliae (ARSEF 2341) isolates, while the addition of 10% peanut oil enhanced conidial yield for S. lanosoniveum isolate ARSEF 6430. B. bassiana ARSEF 3462 on white rice with 100% water yielded the highest conidial production (approximately 1.3 × 1010 conidia g−1 of substrate). Conidia produced on white rice with the different moisture conditions did not differ in tolerance to UV-B radiation or heat. However, high tolerance to UV-B radiation and heat was observed for B. bassiana, M. anisopliae, and A. album isolates. Heat-treated conidia of S. lanosoniveum and L. aphanocladii did not germinate.