神经退行性疾病诊断与进展预测的多模态多任务模型

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Data Pub Date : 2021-10-10 DOI:10.5220/0010600003220328
Sofia Lahrichi, M. Rhanoui, M. Mikram, B. E. Asri
{"title":"神经退行性疾病诊断与进展预测的多模态多任务模型","authors":"Sofia Lahrichi, M. Rhanoui, M. Mikram, B. E. Asri","doi":"10.5220/0010600003220328","DOIUrl":null,"url":null,"abstract":"Recent studies on modelling the progression of Alzheimer's disease use a single modality for their predictions while ignoring the time dimension. However, the nature of patient data is heterogeneous and time dependent which requires models that value these factors in order to achieve a reliable diagnosis, as well as making it possible to track and detect changes in the progression of patients' condition at an early stage. This article overviews various categories of models used for Alzheimer's disease prediction with their respective learning methods, by establishing a comparative study of early prediction and detection Alzheimer's disease progression. Finally, a robust and precise detection model is proposed.","PeriodicalId":36824,"journal":{"name":"Data","volume":"1 1","pages":"322-328"},"PeriodicalIF":2.2000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward a Multimodal Multitask Model for Neurodegenerative Diseases Diagnosis and Progression Prediction\",\"authors\":\"Sofia Lahrichi, M. Rhanoui, M. Mikram, B. E. Asri\",\"doi\":\"10.5220/0010600003220328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies on modelling the progression of Alzheimer's disease use a single modality for their predictions while ignoring the time dimension. However, the nature of patient data is heterogeneous and time dependent which requires models that value these factors in order to achieve a reliable diagnosis, as well as making it possible to track and detect changes in the progression of patients' condition at an early stage. This article overviews various categories of models used for Alzheimer's disease prediction with their respective learning methods, by establishing a comparative study of early prediction and detection Alzheimer's disease progression. Finally, a robust and precise detection model is proposed.\",\"PeriodicalId\":36824,\"journal\":{\"name\":\"Data\",\"volume\":\"1 1\",\"pages\":\"322-328\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.5220/0010600003220328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.5220/0010600003220328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

最近关于阿尔茨海默病进展建模的研究使用单一模式进行预测,而忽略了时间维度。然而,患者数据的性质是异质性和时间依赖性的,这需要重视这些因素的模型,以实现可靠的诊断,并使其能够在早期跟踪和检测患者病情进展的变化。本文通过建立早期预测和检测阿尔茨海默病进展的比较研究,概述了用于阿尔茨海默病预测的各种模型及其各自的学习方法。最后,提出了一种鲁棒且精确的检测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward a Multimodal Multitask Model for Neurodegenerative Diseases Diagnosis and Progression Prediction
Recent studies on modelling the progression of Alzheimer's disease use a single modality for their predictions while ignoring the time dimension. However, the nature of patient data is heterogeneous and time dependent which requires models that value these factors in order to achieve a reliable diagnosis, as well as making it possible to track and detect changes in the progression of patients' condition at an early stage. This article overviews various categories of models used for Alzheimer's disease prediction with their respective learning methods, by establishing a comparative study of early prediction and detection Alzheimer's disease progression. Finally, a robust and precise detection model is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信