N. Rokbani, Raghvendra Kumar, A. Alimi, Pham Huy Thong, Ishaani Priyadarshini, Viet-Ha Nhu, Phuong Thao Thi Ngo
{"title":"启发式参数对PSO逆解的影响","authors":"N. Rokbani, Raghvendra Kumar, A. Alimi, Pham Huy Thong, Ishaani Priyadarshini, Viet-Ha Nhu, Phuong Thao Thi Ngo","doi":"10.1515/ijnsns-2020-0031","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, an investigation is conducted in order to understand impacts of Particle Swarm Optimization (PSO) parameters on the convergence and the quality of the inverse kinematics solutions provided by the IK-PSO (inverse kinematics solver using PSO) – a heuristic inverse kinematics solver algorithm. Over a large panel of parameters investigations, a statistical proof of convergence is provided for 5 links to 60 links articulated system. A recommended set of parameters intervals are presented for this class of IK problems. Investigations are based on the standard inertia weight PSO, and concerned the impact of the inertia weight, the swarm size and the maximum iteration number. For a given set of parameters, the existence of a solution with a given position error is also proved. All tests were conducted over 100 times. The density of probability function, PDF, is used to approximate and analyze the fineness functions, which are the square of the position error. Results showed IK-PSO is an interesting IK solver when a set of good parameters are used. For these parameters, the algorithm showed a statistical proof of convergence with a high resolution, by mean of error position. The algorithm also showed time-effectiveness compared to CCD method, which is assumed to be a real-time IK heuristic solver used in gaming.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impacts of heuristic parameters in PSO inverse kinematics solvers\",\"authors\":\"N. Rokbani, Raghvendra Kumar, A. Alimi, Pham Huy Thong, Ishaani Priyadarshini, Viet-Ha Nhu, Phuong Thao Thi Ngo\",\"doi\":\"10.1515/ijnsns-2020-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, an investigation is conducted in order to understand impacts of Particle Swarm Optimization (PSO) parameters on the convergence and the quality of the inverse kinematics solutions provided by the IK-PSO (inverse kinematics solver using PSO) – a heuristic inverse kinematics solver algorithm. Over a large panel of parameters investigations, a statistical proof of convergence is provided for 5 links to 60 links articulated system. A recommended set of parameters intervals are presented for this class of IK problems. Investigations are based on the standard inertia weight PSO, and concerned the impact of the inertia weight, the swarm size and the maximum iteration number. For a given set of parameters, the existence of a solution with a given position error is also proved. All tests were conducted over 100 times. The density of probability function, PDF, is used to approximate and analyze the fineness functions, which are the square of the position error. Results showed IK-PSO is an interesting IK solver when a set of good parameters are used. For these parameters, the algorithm showed a statistical proof of convergence with a high resolution, by mean of error position. The algorithm also showed time-effectiveness compared to CCD method, which is assumed to be a real-time IK heuristic solver used in gaming.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2020-0031\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2020-0031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Impacts of heuristic parameters in PSO inverse kinematics solvers
Abstract In this paper, an investigation is conducted in order to understand impacts of Particle Swarm Optimization (PSO) parameters on the convergence and the quality of the inverse kinematics solutions provided by the IK-PSO (inverse kinematics solver using PSO) – a heuristic inverse kinematics solver algorithm. Over a large panel of parameters investigations, a statistical proof of convergence is provided for 5 links to 60 links articulated system. A recommended set of parameters intervals are presented for this class of IK problems. Investigations are based on the standard inertia weight PSO, and concerned the impact of the inertia weight, the swarm size and the maximum iteration number. For a given set of parameters, the existence of a solution with a given position error is also proved. All tests were conducted over 100 times. The density of probability function, PDF, is used to approximate and analyze the fineness functions, which are the square of the position error. Results showed IK-PSO is an interesting IK solver when a set of good parameters are used. For these parameters, the algorithm showed a statistical proof of convergence with a high resolution, by mean of error position. The algorithm also showed time-effectiveness compared to CCD method, which is assumed to be a real-time IK heuristic solver used in gaming.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.