酸在制备超亮双发射碳点及其超长余辉尿素/双缩脲复合材料中的作用

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Dong-mei Yan, Zhi‐ying Zhang, Yun Liu, Yan Guan, Dongming Sun
{"title":"酸在制备超亮双发射碳点及其超长余辉尿素/双缩脲复合材料中的作用","authors":"Dong-mei Yan, Zhi‐ying Zhang, Yun Liu, Yan Guan, Dongming Sun","doi":"10.1002/ppsc.202300049","DOIUrl":null,"url":null,"abstract":"Since 2015, m‐phenylenediamines (mPD) have become a popular carbon source for the synthesis of carbonized polymer dots (CPDs). However, their exact fluorescence mechanism is still obscure. To elucidate this, inorganic acids that are carbon‐free are chosen as additives for a comparative study. It is found that the green fluorescence quantum yield (nearly 80%), photostability, and reaction yield (over 90%) can be enhanced by introduction of most of inorganic acids with moderate amount. Besides, green‐blue dual emission is observed in acid‐assisted groups. UV‐vis absorption, Fourier‐transform infrared spectroscopy, and surface‐enhanced Raman scattering results indicate that the green fluorescence center is composed of quinoid rings, whereas the blue fluorophore contains benzenoid rings. Moreover, room‐temperature afterglow with lifetime up to 1.25 s is observed exclusively in acid‐assisted CPDs composites with urea/biuret. The blue chromophore is proposed to be the origin of the triplet level that induces the long afterglow. This work provides an in‐depth understanding on the macromolecular structures of CPDs derived from phenylenediamines, and contributes a new line of thought to the origin of phosphorescence in N‐doped carbon dots.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Acids in Producing Ultrabright, Dual‐Emissive Carbon Dots and their Urea/Biuret Composites with Ultralong Afterglow\",\"authors\":\"Dong-mei Yan, Zhi‐ying Zhang, Yun Liu, Yan Guan, Dongming Sun\",\"doi\":\"10.1002/ppsc.202300049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since 2015, m‐phenylenediamines (mPD) have become a popular carbon source for the synthesis of carbonized polymer dots (CPDs). However, their exact fluorescence mechanism is still obscure. To elucidate this, inorganic acids that are carbon‐free are chosen as additives for a comparative study. It is found that the green fluorescence quantum yield (nearly 80%), photostability, and reaction yield (over 90%) can be enhanced by introduction of most of inorganic acids with moderate amount. Besides, green‐blue dual emission is observed in acid‐assisted groups. UV‐vis absorption, Fourier‐transform infrared spectroscopy, and surface‐enhanced Raman scattering results indicate that the green fluorescence center is composed of quinoid rings, whereas the blue fluorophore contains benzenoid rings. Moreover, room‐temperature afterglow with lifetime up to 1.25 s is observed exclusively in acid‐assisted CPDs composites with urea/biuret. The blue chromophore is proposed to be the origin of the triplet level that induces the long afterglow. This work provides an in‐depth understanding on the macromolecular structures of CPDs derived from phenylenediamines, and contributes a new line of thought to the origin of phosphorescence in N‐doped carbon dots.\",\"PeriodicalId\":19903,\"journal\":{\"name\":\"Particle & Particle Systems Characterization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle & Particle Systems Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/ppsc.202300049\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202300049","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

自2015年以来,间苯二胺(mPD)已成为合成碳化聚合物点(CPD)的流行碳源。然而,它们的确切荧光机制仍然不清楚。为了阐明这一点,选择无碳的无机酸作为添加剂进行比较研究。研究发现,通过引入适量的大多数无机酸,可以提高绿色荧光量子产率(近80%)、光稳定性和反应产率(超过90%)。此外,在酸辅助基团中观察到绿蓝双发射。紫外-可见吸收、傅立叶变换红外光谱和表面增强拉曼散射结果表明,绿色荧光中心由醌环组成,而蓝色荧光团包含苯环。此外,仅在含有尿素/缩二脲的酸辅助CPDs复合材料中观察到寿命高达1.25 s的室温余辉。蓝色发色团被认为是引发长余辉的三重态能级的起源。这项工作深入了解了苯二胺衍生的CPDs的大分子结构,并为N掺杂碳点磷光的起源提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Role of Acids in Producing Ultrabright, Dual‐Emissive Carbon Dots and their Urea/Biuret Composites with Ultralong Afterglow

Role of Acids in Producing Ultrabright, Dual‐Emissive Carbon Dots and their Urea/Biuret Composites with Ultralong Afterglow
Since 2015, m‐phenylenediamines (mPD) have become a popular carbon source for the synthesis of carbonized polymer dots (CPDs). However, their exact fluorescence mechanism is still obscure. To elucidate this, inorganic acids that are carbon‐free are chosen as additives for a comparative study. It is found that the green fluorescence quantum yield (nearly 80%), photostability, and reaction yield (over 90%) can be enhanced by introduction of most of inorganic acids with moderate amount. Besides, green‐blue dual emission is observed in acid‐assisted groups. UV‐vis absorption, Fourier‐transform infrared spectroscopy, and surface‐enhanced Raman scattering results indicate that the green fluorescence center is composed of quinoid rings, whereas the blue fluorophore contains benzenoid rings. Moreover, room‐temperature afterglow with lifetime up to 1.25 s is observed exclusively in acid‐assisted CPDs composites with urea/biuret. The blue chromophore is proposed to be the origin of the triplet level that induces the long afterglow. This work provides an in‐depth understanding on the macromolecular structures of CPDs derived from phenylenediamines, and contributes a new line of thought to the origin of phosphorescence in N‐doped carbon dots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Particle & Particle Systems Characterization
Particle & Particle Systems Characterization 工程技术-材料科学:表征与测试
CiteScore
5.50
自引率
0.00%
发文量
114
审稿时长
3.0 months
期刊介绍: Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices. Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems. Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others. Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信