定量金融的梯度增强

IF 0.8 4区 经济学 Q4 BUSINESS, FINANCE
Jesse Davis, Laurens Devos, S. Reyners, W. Schoutens
{"title":"定量金融的梯度增强","authors":"Jesse Davis, Laurens Devos, S. Reyners, W. Schoutens","doi":"10.21314/JCF.2020.403","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss how tree-based machine learning techniques can be used in the context of derivatives pricing. Gradient boosted regression trees are employed to learn the pricing map for a couple of classical, time-consuming problems in quantitative finance. In particular, we illustrate this methodology by reducing computation times for pricing exotic derivative products and American options. Once the gradient boosting model is trained, it is used to make fast predictions of new prices. We show that this approach leads to speed-ups of several orders of magnitude, while the loss of accuracy is very acceptable from a practical point of view. Besides the predictive performance of machine learning methods, financial regulators attach more and more importance to the interpretability of pricing models. For both applications, we therefore look under the hood of the gradient boosting model and try to reveal how the price is constructed and interpreted.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gradient boosting for quantitative finance\",\"authors\":\"Jesse Davis, Laurens Devos, S. Reyners, W. Schoutens\",\"doi\":\"10.21314/JCF.2020.403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss how tree-based machine learning techniques can be used in the context of derivatives pricing. Gradient boosted regression trees are employed to learn the pricing map for a couple of classical, time-consuming problems in quantitative finance. In particular, we illustrate this methodology by reducing computation times for pricing exotic derivative products and American options. Once the gradient boosting model is trained, it is used to make fast predictions of new prices. We show that this approach leads to speed-ups of several orders of magnitude, while the loss of accuracy is very acceptable from a practical point of view. Besides the predictive performance of machine learning methods, financial regulators attach more and more importance to the interpretability of pricing models. For both applications, we therefore look under the hood of the gradient boosting model and try to reveal how the price is constructed and interpreted.\",\"PeriodicalId\":51731,\"journal\":{\"name\":\"Journal of Computational Finance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/JCF.2020.403\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JCF.2020.403","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们讨论了如何将基于树的机器学习技术用于衍生品定价。梯度增强回归树被用来学习量化金融中几个经典的、耗时的问题的定价图。特别是,我们通过减少定价奇异衍生产品和美国期权的计算时间来说明这种方法。一旦训练了梯度提升模型,它就用于对新价格进行快速预测。我们表明,这种方法会导致几个数量级的加速,而从实际角度来看,精度的损失是可以接受的。除了机器学习方法的预测性能外,金融监管机构越来越重视定价模型的可解释性。因此,对于这两种应用,我们都会深入研究梯度提升模型,并试图揭示价格是如何构建和解释的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient boosting for quantitative finance
In this paper, we discuss how tree-based machine learning techniques can be used in the context of derivatives pricing. Gradient boosted regression trees are employed to learn the pricing map for a couple of classical, time-consuming problems in quantitative finance. In particular, we illustrate this methodology by reducing computation times for pricing exotic derivative products and American options. Once the gradient boosting model is trained, it is used to make fast predictions of new prices. We show that this approach leads to speed-ups of several orders of magnitude, while the loss of accuracy is very acceptable from a practical point of view. Besides the predictive performance of machine learning methods, financial regulators attach more and more importance to the interpretability of pricing models. For both applications, we therefore look under the hood of the gradient boosting model and try to reveal how the price is constructed and interpreted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
8
期刊介绍: The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信