微处理器控制的经股假体摆动辅助对不同速度和坡度行走的影响

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Wearable technologies Pub Date : 2023-03-02 eCollection Date: 2023-01-01 DOI:10.1017/wtc.2023.4
Jantzen Lee, Michael Goldfarb
{"title":"微处理器控制的经股假体摆动辅助对不同速度和坡度行走的影响","authors":"Jantzen Lee, Michael Goldfarb","doi":"10.1017/wtc.2023.4","DOIUrl":null,"url":null,"abstract":"<p><p>This article proposes, describes, and tests a swing-assist walking controller for a stance-controlled, swing-assisted knee prosthesis that aims to combine benefits of passive swing mechanics (e.g., quiet operation, biomimetic function, and low power requirements) with benefits of powered swing assistance (e.g., increased robustness of swing-phase motion and specifically increased toe clearance). A three-participant, multislope, multispeed treadmill walking study was performed using the swing-assist prosthesis and controller, as well as using the participants' prescribed microprocessor knee devices. The swing-assist device and approach were found to improve user minimum foot clearance during walking at slopes and speeds, and also to improve symmetry of knee motion. Hip power inputs from stance knee release to heel strike indicated that, on average, less hip power was required when using the swing-assist prosthesis, indicating that the observed benefits were likely the result of the knee device and its control methodology, rather than a result of increased hip joint effort.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936271/pdf/","citationCount":"0","resultStr":"{\"title\":\"The effects of swing assistance in a microprocessor-controlled transfemoral prosthesis on walking at varying speeds and grades.\",\"authors\":\"Jantzen Lee, Michael Goldfarb\",\"doi\":\"10.1017/wtc.2023.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article proposes, describes, and tests a swing-assist walking controller for a stance-controlled, swing-assisted knee prosthesis that aims to combine benefits of passive swing mechanics (e.g., quiet operation, biomimetic function, and low power requirements) with benefits of powered swing assistance (e.g., increased robustness of swing-phase motion and specifically increased toe clearance). A three-participant, multislope, multispeed treadmill walking study was performed using the swing-assist prosthesis and controller, as well as using the participants' prescribed microprocessor knee devices. The swing-assist device and approach were found to improve user minimum foot clearance during walking at slopes and speeds, and also to improve symmetry of knee motion. Hip power inputs from stance knee release to heel strike indicated that, on average, less hip power was required when using the swing-assist prosthesis, indicating that the observed benefits were likely the result of the knee device and its control methodology, rather than a result of increased hip joint effort.</p>\",\"PeriodicalId\":75318,\"journal\":{\"name\":\"Wearable technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936271/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wearable technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/wtc.2023.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2023.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出、描述并测试了一种用于姿势控制的摆动辅助行走控制器,摇摆辅助膝关节假体,旨在将被动摇摆力学的优点(如安静操作、仿生功能和低功率要求)与动力摇摆辅助的优点(例如,增加摇摆阶段运动的鲁棒性,特别是增加脚趾间隙)相结合。使用摇摆辅助假肢和控制器,以及参与者指定的微处理器膝关节设备,进行了一项由三名参与者组成的多坡多速跑步机行走研究。挥杆辅助装置和方法被发现可以改善使用者在斜坡和速度下行走时的最小足部间隙,还可以改善膝盖运动的对称性。从站立膝盖释放到脚跟撞击的髋关节力量输入表明,使用摆动辅助假体时,平均需要较少的髋关节动力,这表明观察到的益处可能是膝关节装置及其控制方法的结果,而不是髋关节力量增加的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effects of swing assistance in a microprocessor-controlled transfemoral prosthesis on walking at varying speeds and grades.

This article proposes, describes, and tests a swing-assist walking controller for a stance-controlled, swing-assisted knee prosthesis that aims to combine benefits of passive swing mechanics (e.g., quiet operation, biomimetic function, and low power requirements) with benefits of powered swing assistance (e.g., increased robustness of swing-phase motion and specifically increased toe clearance). A three-participant, multislope, multispeed treadmill walking study was performed using the swing-assist prosthesis and controller, as well as using the participants' prescribed microprocessor knee devices. The swing-assist device and approach were found to improve user minimum foot clearance during walking at slopes and speeds, and also to improve symmetry of knee motion. Hip power inputs from stance knee release to heel strike indicated that, on average, less hip power was required when using the swing-assist prosthesis, indicating that the observed benefits were likely the result of the knee device and its control methodology, rather than a result of increased hip joint effort.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信