{"title":"通过同调维的Gorenstein环,以及Ext和Tate上同调消失的对称性","authors":"Dipankar Ghosh, Tony J. Puthenpurakal","doi":"10.1007/s10468-023-10223-z","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this article is to consider the spectral sequences induced by tensor-hom adjunction, and provide a number of new results. Let <i>R</i> be a commutative Noetherian local ring of dimension <i>d</i>. In the 1st part, it is proved that <i>R</i> is Gorenstein if and only if it admits a nonzero CM (Cohen-Macaulay) module <i>M</i> of finite Gorenstein dimension <i>g</i> such that <span>\\(\\text {type}(M) \\leqslant \\mu ( \\text {Ext}_R^g(M,R) )\\)</span> (e.g., <span>\\(\\text {type}(M)=1\\)</span>). This considerably strengthens a result of Takahashi. Moreover, we show that if there is a nonzero <i>R</i>-module <i>M</i> of depth <span>\\(\\geqslant d - 1\\)</span> such that the injective dimensions of <i>M</i>, <span>\\(\\text {Hom}_R(M,M)\\)</span> and <span>\\(\\text {Ext}_R^1(M,M)\\)</span> are finite, then <i>M</i> has finite projective dimension and <i>R</i> is Gorenstein. In the 2nd part, we assume that <i>R</i> is CM with a canonical module <span>\\(\\omega \\)</span>. For CM <i>R</i>-modules <i>M</i> and <i>N</i>, we show that the vanishing of one of the following implies the same for others: <span>\\(\\text {Ext}_R^{\\gg 0}(M,N^{+})\\)</span>, <span>\\(\\text {Ext}_R^{\\gg 0}(N,M^{+})\\)</span> and <span>\\(\\text {Tor}_{\\gg 0}^R(M,N)\\)</span>, where <span>\\(M^{+}\\)</span> denotes <span>\\(\\text {Ext}_R^{d-\\dim (M)}(M,\\omega )\\)</span>. This strengthens a result of Huneke and Jorgensen. Furthermore, we prove a similar result for Tate cohomologies under the additional condition that <i>R</i> is Gorenstein.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gorenstein Rings via Homological Dimensions, and Symmetry in Vanishing of Ext and Tate Cohomology\",\"authors\":\"Dipankar Ghosh, Tony J. Puthenpurakal\",\"doi\":\"10.1007/s10468-023-10223-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this article is to consider the spectral sequences induced by tensor-hom adjunction, and provide a number of new results. Let <i>R</i> be a commutative Noetherian local ring of dimension <i>d</i>. In the 1st part, it is proved that <i>R</i> is Gorenstein if and only if it admits a nonzero CM (Cohen-Macaulay) module <i>M</i> of finite Gorenstein dimension <i>g</i> such that <span>\\\\(\\\\text {type}(M) \\\\leqslant \\\\mu ( \\\\text {Ext}_R^g(M,R) )\\\\)</span> (e.g., <span>\\\\(\\\\text {type}(M)=1\\\\)</span>). This considerably strengthens a result of Takahashi. Moreover, we show that if there is a nonzero <i>R</i>-module <i>M</i> of depth <span>\\\\(\\\\geqslant d - 1\\\\)</span> such that the injective dimensions of <i>M</i>, <span>\\\\(\\\\text {Hom}_R(M,M)\\\\)</span> and <span>\\\\(\\\\text {Ext}_R^1(M,M)\\\\)</span> are finite, then <i>M</i> has finite projective dimension and <i>R</i> is Gorenstein. In the 2nd part, we assume that <i>R</i> is CM with a canonical module <span>\\\\(\\\\omega \\\\)</span>. For CM <i>R</i>-modules <i>M</i> and <i>N</i>, we show that the vanishing of one of the following implies the same for others: <span>\\\\(\\\\text {Ext}_R^{\\\\gg 0}(M,N^{+})\\\\)</span>, <span>\\\\(\\\\text {Ext}_R^{\\\\gg 0}(N,M^{+})\\\\)</span> and <span>\\\\(\\\\text {Tor}_{\\\\gg 0}^R(M,N)\\\\)</span>, where <span>\\\\(M^{+}\\\\)</span> denotes <span>\\\\(\\\\text {Ext}_R^{d-\\\\dim (M)}(M,\\\\omega )\\\\)</span>. This strengthens a result of Huneke and Jorgensen. Furthermore, we prove a similar result for Tate cohomologies under the additional condition that <i>R</i> is Gorenstein.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10223-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10223-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文的目的是考虑张量-虹邻接诱导的谱序列,并提供一些新结果。让 R 是维数为 d 的交换 Noetherian 局部环。在第一部分中,我们证明了当且仅当 R 允许一个有限 Gorenstein 维数为 g 的非零 CM(Cohen-Macaulay)模块 M,使得 \(\text {type}(M) \leqslant \mu ( \text {Ext}_R^g(M,R) )\) (例如、\(\text {type}(M)=1\)).这大大加强了高桥的一个结果。此外,我们还证明了如果存在一个深度为 (geqslant d - 1)的非零 R 模块 M,使得 M 的注入维数、 (text {Hom}_R(M,M)\) 和 (text {Ext}_R^1(M,M)\) 都是有限的,那么 M 就有有限的投影维数,而 R 是戈伦斯坦的。在第二部分,我们假定 R 是 CM,有一个典型模块 (\omega \)。对于 CM R 模块 M 和 N,我们会证明下面一个模块的消失意味着其他模块的消失:\(\text{Ext}_R^{gg0}(M,N^{+})\)、\(\text{Ext}_R^{gg0}(N,M^{+})\)和\(\text{Tor}_{gg0}^R(M,N)\),其中,\(M^{+}\)表示\(\text {Ext}_R^{d-\dim (M)}(M,\omega )\).这加强了胡内克和约根森的一个结果。此外,我们还证明了在 R 是 Gorenstein 的附加条件下 Tate 同调的类似结果。
Gorenstein Rings via Homological Dimensions, and Symmetry in Vanishing of Ext and Tate Cohomology
The aim of this article is to consider the spectral sequences induced by tensor-hom adjunction, and provide a number of new results. Let R be a commutative Noetherian local ring of dimension d. In the 1st part, it is proved that R is Gorenstein if and only if it admits a nonzero CM (Cohen-Macaulay) module M of finite Gorenstein dimension g such that \(\text {type}(M) \leqslant \mu ( \text {Ext}_R^g(M,R) )\) (e.g., \(\text {type}(M)=1\)). This considerably strengthens a result of Takahashi. Moreover, we show that if there is a nonzero R-module M of depth \(\geqslant d - 1\) such that the injective dimensions of M, \(\text {Hom}_R(M,M)\) and \(\text {Ext}_R^1(M,M)\) are finite, then M has finite projective dimension and R is Gorenstein. In the 2nd part, we assume that R is CM with a canonical module \(\omega \). For CM R-modules M and N, we show that the vanishing of one of the following implies the same for others: \(\text {Ext}_R^{\gg 0}(M,N^{+})\), \(\text {Ext}_R^{\gg 0}(N,M^{+})\) and \(\text {Tor}_{\gg 0}^R(M,N)\), where \(M^{+}\) denotes \(\text {Ext}_R^{d-\dim (M)}(M,\omega )\). This strengthens a result of Huneke and Jorgensen. Furthermore, we prove a similar result for Tate cohomologies under the additional condition that R is Gorenstein.